• 제목/요약/키워드: chip-load/cutting-force model

검색결과 15건 처리시간 0.019초

2차원 윤곽가공에서 이송률 자동 조정 (Automatic Feedrate Adjustment for 2D Profile Milling)

  • 고기훈;서정철;최병규
    • 한국CDE학회논문집
    • /
    • 제5권2호
    • /
    • pp.175-183
    • /
    • 2000
  • Proposed in this paper is a model-bated AFA (automatic feedrate-adjustment) method for maintaining smooth cutting-loads (i.e., cutting-force) during 2D-profile milling. Before the cutting-force model was established, some assumptions were verified through a series of preliminary cutting experiments (The results found that the curving-force was independent of the cutting speed and the cutting action at the cutter bosom). From the data obtained during the main cutting experiments, a “chip-load/cutting-force model”representing the cutting-force as a function of the chip-load (i.e., effective cutting-depth) and a feedrate is proposed. Based on the model. an AFA scheme for maintaining smooth cutting-force by adjusting the feedrate (i.e., F-code) according to the changes in chip-load was proposed. To check the validity of the proposed AFA scheme. another set of cutting experiments was conducted by using feedrate-adjusted NC-data while monitoring the actual machining processes using an accelerometer. The experimental results showed that the proposed AFA-scheme was quite effective.

  • PDF

엔드밀 가공시 절삭조건이 비절삭력계수에 미치는 영향 (Effects of Cutting Conditions on Specific Cutting Force Coefficients in End Milling)

  • 이신영
    • 한국공작기계학회논문집
    • /
    • 제13권6호
    • /
    • pp.1-9
    • /
    • 2004
  • For improvement of productivity and cutting tool lift, cutting force in end milling needs to be predicted accurately. In order to analyze cutting force, the cutting dynamics was modelled mathematically by using chip load, cutting geometry, and the relationship between cutting forces and the chip load. Specific cutting force coefficients of the cutting dynamics model were obtained by average cutting forces, tool diameter, cutting speed, fled, axial depth and radial depth of cut. The effects of the cutting conditions on the specific cutting force constants in milling were studied. The model is verified through comparisons of model predicted cutting forces with measured cutting forces obtained from machining experiments.

밀링가공시 절삭조건이 비절삭력계수에 미치는 영향 분석 (Effects of Cutting Conditions on Specific Cutting Force Coefficients in Milling)

  • 이신영
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.93-98
    • /
    • 2004
  • A reasonable analysis of cutting force in end milling may give much advantage to improvement of productivity and cutting tool life. In order to analyze cutting force, the cutting dynamics was modelled mathematically by using chip load, cutting geometry, and the relationship between cutting forces and the chip load. Specific cutting constants of the cutting dynamics model were obtained by average cutting forces, tool diameter, cutting speed, feed, axial depth, and radial depth of cut. The effects of the cutting conditions on the specific cutting force constants in milling were studied. The model is verified through comparisons of model predicted cutting forces with measured culling forces obtained from machining experiments

  • PDF

금형강의 앤드밀 가공시 동적모델에 의한 절삭력 예측

  • 이기용;강명창;김정석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.49-54
    • /
    • 1994
  • A dynamic model for the cutting process in the end milling process is developed. This model, which describes the dynamic response of the end mill, the chip load geometry including tool runout, the dependence of the cutting forces on the chip load, is used to predict the dynamic cutting force during the end milling process. In order to predict accurately cutting forces and tool vibration, the model, which uses instantaneous specific cutting force, includes both regenerative effect and penetration effect. The model is verified through comparisons of model predicted cutting force with measured cutting forces obtained from machining experiments.

  • PDF

엔드밀 가공의 절삭력 예측 및 실험 (Prediction and Experiments of Cutting Forces in End Milling)

  • 이신영;임용묵
    • 한국공작기계학회논문집
    • /
    • 제13권4호
    • /
    • pp.9-15
    • /
    • 2004
  • A reasonable analysis of cutting force in end milling may give much advantage to improvement of productivity and cutting tool life. In order to analyze cutting force, the cutting dynamics was modelled mathematically by using chip load, cutting geometry, and the relationship between cutting forces and the chip load. The specific cutting constants of the cutting dynamics model were obtained by average cutting forces, tool diameter, cutting speed, feed, axial depth, and radial depth of cut. The model is verified through comparisons of model predicted cutting forces with measured cutting forces obtained from machining experiments. The results showed good agreement and from that we could predict reasonably the cutting forces in end milling.

엔드밀 가공시 동적 절삭력 모델에 의한 절삭력 및 표면형상 예측 (The Prediction of Cutting Force and Surface Topography by Dynamic Force Model in End Milling)

  • 이기용;강명창;김정석
    • 한국정밀공학회지
    • /
    • 제14권4호
    • /
    • pp.38-45
    • /
    • 1997
  • A new dynamic model for the cutting process inb the end milling process is developed. This model, which describes the dynamic response of the end mill, the chip load geometry including tool runout, the dependence of the cutting forces on the chip load, is used to predict the dynamic cutting force during the end milling process. In order to predict accurately cutting forces and tool vibration, the model which uses instantaneous specific cutting force, inclueds both regenerative effect and penetration effect, The model is verified through comparisons of model predicted cutting force with measured cutting force obtained from machining experiments.

  • PDF

Specific Cutting Force Coefficients Modeling of End Milling by Neural Network

  • Lee, Sin-Young;Lee, Jang-Moo
    • Journal of Mechanical Science and Technology
    • /
    • 제14권6호
    • /
    • pp.622-632
    • /
    • 2000
  • In a high precision vertical machining center, the estimation of cutting forces is important for many reasons such as prediction of chatter vibration, surface roughness and so on. The cutting forces are difficult to predict because they are very complex and time variant. In order to predict the cutting forces of end-milling processes for various cutting conditions, their mathematical model is important and the model is based on chip load, cutting geometry, and the relationship between cutting forces and chip loads. Specific cutting force coefficients of the model have been obtained as interpolation function types by averaging forces of cutting tests. In this paper the coefficients are obtained by neural network and the results of the conventional method and those of the proposed method are compared. The results show that the neural network method gives more correct values than the function type and that in the learning stage as the omitted number of experimental data increase the average errors increase as well.

  • PDF

신경회로망을 이용한 엔드밀 가공의 비절삭력계수 모델링 (Specific Cutting Force Coefficients Modeling of End Milling by Using Neural Network)

  • 이신영;이장무
    • 대한기계학회논문집A
    • /
    • 제23권6호
    • /
    • pp.979-987
    • /
    • 1999
  • In a high precision vertical machining center, the estimation of cutting forces is important for many reasons such as prediction of chatter vibration, surface roughness and so on, and cutting forces are difficult to predict because they are very complex and time variant. In order to predict the cutting forces of end-milling process for various cutting conditions, a mathematical model is important and this model is based on chip load, cutting geometry, and the relationship between cutting forces and chip loads. Specific cutting force coefficients of the model have been obtained as interpolation function types by averaging farces of cutting tests. In this paper, the coefficients are obtained by neural network and the results of the conventional method and those of the proposed method are compared. The results show that the neural network method gives more correct values than the function type and that in teaming stage as the omitted numbers of experimental data increases the average errors increase.

밀링가공에서 절삭력 모델을 이용한 커터 오프셋 판별에 관한 연구 (A Study on the Identification of Cutter Offset by Cutting Force Model in Milling Process)

  • 김영석
    • 한국생산제조학회지
    • /
    • 제7권2호
    • /
    • pp.91-99
    • /
    • 1998
  • This paper presents a methodology for identifying the cutter runout geometry in end milling process. Cutter runout is common but undesirable phenomenon in multi-tooth machining because it introduces variable chip loading to insert which results in a accelerated tool wear. amplification of force variation and hence enlargement vibration amplitude From understanding of chip load change kinematics, the analytical cutting force convolution model was formulated as the angular domain convolution model was formulated as the angular domain convolution of three dynamic cutting force component functions. By virtue of the convolution integration property, the frequency domain expression of the local cutting forces and the chip width density of the cutter. Experimental study is presented to validate the analytical model. This study provides the in-process monitoring and compensation of dynamic cutter runout to improve machining tolerance and surface quality for industrial application.

  • PDF

밀링가공에서의 커더 런 아웃량 검출에 관한 연구 (A Study on the Detection of Cutter Runout Magnitude in Milling)

  • 황준;정의식;이기용;신승춘;남궁석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.151-156
    • /
    • 1995
  • This paper presents a methodology for real-time detecting and identifying the runout geometry of an end mill. Cutter runout is a common but undesirable phenomenon in multi-tooth machining such as end-milling process because it introduces variable chip loading to insert which results in a accelerated tool wear,amplification of force variation and hence enlargement vibration amplitude. Form understanding of chip load change kinematics, the analytical sutting force model was formulated as the angular domain convolution of three dynamic cutting force component functions. By virtue of the convolution integration property, the frequency domain expression of the total cutting forces can be given as the algebraic multiplication of the Fourier transforms of the local cutting forces and the chip width density of the cutter. Experimental study are presented to validata the analytical model. This study provides the in-process monitoring and compensation of dynamic cutter runout to improve machining tolerance tolerance and surface quality for industriql application.

  • PDF