• 제목/요약/키워드: chip seals

검색결과 5건 처리시간 0.019초

아스팔트 도로포장 유지보수용 표면처리공법의 공용성 평가 (Performance Evaluation of Surface Treatments for Asphalt Pavement Preservation)

  • 임정혁;김영수;백철민
    • 한국도로학회논문집
    • /
    • 제17권2호
    • /
    • pp.89-98
    • /
    • 2015
  • PURPOSES : The objective of this study is to evaluate the performance properties of chip seals and fog seals with polymer-modified emulsions. METHODS : The performance of chip seals and fog seals was evaluated on the basis of common issues in surface treatments. Granite aggregate and four types of asphalt emulsions (one of the unmodified and three of the modified emulsions) were used considering the usage in field. A Vialit test was performed to determine the aggregate retention, and the MMLS3 (Third Scale Model Mobile Load Simulator) test was conducted to determine the aggregate retention, bleeding, and rutting. In addition, the fog seal specimens were tested by the BPT (British Pendulum Test) to evaluate skid resistance. RESULTS AND CONCLUSIONS : Overall, the polymer-modified emulsions (PMEs) showed better aggregate retention and bleeding resistance for both chip seals and fog seals. When comparing the performance of the PMEs, the difference was not considerable. In addition, PMEs present significantly better rutting resistance than unmodified emulsions. For skid resistance, if the recommended mix design is applied, the specimens do not cause issues with skid resistance. Although all of the fog seal specimens were over the criteria for skid resistance, the specimen fabricated by the high emulsion application rate (EAR) of the unmodified emulsion was nearly equivalent to the skid value criteria. Therefore, the use of an unmodified emulsion with a high EAR should be carefully applied in the field.

아스팔트포장의 표면처리에 사용되는 유화아스팔트의 접착력 특성 평가 (Bond Strength Evaluation of Asphalt Emulsions used in Asphalt Surface Treatments)

  • 임정혁;김영수;양성린
    • 한국도로학회논문집
    • /
    • 제16권5호
    • /
    • pp.1-8
    • /
    • 2014
  • PURPOSES : The objective of this study is to evaluate the bond strength of asphalt emulsions including polymer-modified emulsions for chip seals and fog seals using the bitumen bond strength (BBS) test. METHODS : For the laboratory testing, the Pneumatic Adhesion tensile Testing Instrument(PATTI) device is used to measure the bond strength between the asphalt emulsion and aggregate substrate based on the AASHTO TP-91. In order to conduct all the tests in controled condition, all test procedures are performed in the environmental chamber. The CRS-2L and the SBS CRS-2P emulsions are used as a polymer-modified emulsion, and then unmodified emulsion, the CRS-2, is compared for the evaluation of chip seal performance. For the fog seal performance evaluation, two types of polymer-modified emulsions and one of unmodified emulsion, the CSS-1H, are employed. For chip seal study, the BBS tests are performed at 30, 60, 120, and 240 minutes of curing times with curing and testing temperatures of $15^{\circ}C$, $25^{\circ}C$, and $35^{\circ}C$. The fog seal tests are conducted at 30, 60, 90, 120, 180 minutes, and 24 hours with curing and testing temperatures of $25^{\circ}C$, $30^{\circ}C$, and $35^{\circ}C$. RESULTS AND CONCLUSIONS : Overall, chip seal emulsions and fog seal emulsions show the similar bond strength trend. At the same testing condition, polymer-modified emulsions show better bond strength than unmodified emulsions. Also, there is no significant difference between polymer-modified emulsions. One of important findings is that the most bond strength reaches their final bond strength within one hour of curing time. Therefore, the early curing time plays a vital role in the performance of chip seals and fog seals.

표면 에너지 원리를 이용한 칩실 포장의 초기 점착력 특성 연구 (Study on Early Adhesive Characteristic of Chip Seals Using a Surface Energy Approach)

  • 임정혁
    • 한국도로학회논문집
    • /
    • 제17권6호
    • /
    • pp.47-54
    • /
    • 2015
  • PURPOSES : The objective of this study is to evaluate the early adhesive characteristic of asphalt emulsions, including polymer-modified emulsions, for chip seals using the surface energy concept, the bitumen bond strength (BBS) test, and the Vialit test. METHODS : Two general methods, the BBS test and Vialit test, were applied to investigate the bond strength and the aggregate loss, respectively. A new theory, the surface free energy (SFE) theory, was used to evaluate the adhesive characteristic between the emulsion and the aggregate. Based on the theory, the contact angles were measured, and then the surface energy components were calculated. Using those components, the work of adhesion (Wa) was calculated for each emulsion. To ensure reliable results, all the tests were performed under the same conditions, i.e., at $25^{\circ}C$ for 240 minutes of curing time. For the materials, three emulsions (CRS-2, CRS-2L, and CRS-2P) and one aggregate type (granite) were employed. RESULTS AND CONCLUSIONS : Under the same conditions, the modified emulsions showed better adhesive characteristics and curing behaviors than the unmodified emulsions. In addition, there was no significant difference between the various modified emulsions. One of the important findings is that the analysis by Wa presents more sensitive results than other methods. The results of the Wa showed that the CRS-2P emulsion has the best adhesive characteristics. Consequently, the use of modified emulsions for chip seals could prevent aggregate loss and allow open traffic earlier.

Chip Seals 시공을 위한 롤러 종류에 따른 기초적인 연구 (A Preliminary Study of Roller Types for Chip Seals Construction)

  • 이재준;김영수
    • 한국도로학회논문집
    • /
    • 제12권3호
    • /
    • pp.79-85
    • /
    • 2010
  • 본 논문은 골재부착력(aggregate retention) 평가를 통해서 칩실(chip seal)에서 사용되는 롤러 종류의 기초적인 연구 결과를 설명하고 있다. 입도 78M의 화강암 골재와 CRS-2 이멀젼(emulsion)을 사용하여 single layer 칩실 테스트 구간을 시공하였으며, 3개의 다른 롤러 종류를 사용하였다. 사용된 롤러 종류는 pneumatic tire roller, steel wheel roller, and combination roller를 사용하였다. 세 종류의 롤러의 성능을 효과적으로 연구하기 위해서는 시공현장으로부터 직접 테스트용 시편을 얻는 것이 매우 중요하기 때문에, 노스캐롤라이나 주, Bailey에 있는 New Sandy Hill Church Road에서 테스트 구간 설정하고 일반적인 노스캐롤라이나 주의 칩실시공 절차에 준하여 시공을 실시하였다. 테스트 구간에서 제작된 시편들을 실험실로 옮겨서 골재부착력(aggregate retention) 성능평가를 실시하였다. 골재의 부착력을 평가하기 위해서 flip-over test(FOT), Vialit test, and the third-scale Model Mobile Loading Simulator (MMLS3) 시험방법들을 채택하였다. 세 가지의 시험결과들과 시험시공 현장에서 관측된 육안조사를 통해서 다음과 같은 롤러 종류와 순서를 추천하게 되었다. pneumatic tire roller 와 combination roller를 함께 사용하며 처음에 pneumatic tire roller가 다짐을 한 뒤에 그 뒤를 combination roller가 다짐하는 순서로 다짐작업을 함으로써 칩실의 성능이 향상 되리라 사료된다.

아스팔트 도로포장 유지보수(표면처리)용 유화아스팔트의 양생 및 점착거동특성 평가 (Evaluation of Asphalt Emulsions Curing and Adhesive Behavior used in Asphalt Pavement Preservation (Surface Treatments))

  • 임정혁;김영수
    • 한국도로학회논문집
    • /
    • 제16권6호
    • /
    • pp.39-50
    • /
    • 2014
  • PURPOSES : The objective of this study is to evaluate the curing and adhesive behavior of asphalt emulsions including polymer-modified emulsions for chip seals and fog seals. METHODS : For the laboratory testing, the evaporation test, the bitumen bond strength (BBS) test, and the Vialit test are used. Also, the rolling ball test and the damping test are employed to evaluate the curing properties of the fog seal emulsions. In order to conduct all the tests in controled condition, all test procedures are performed in the environmental chamber. The CRS-2L and the SBS CRS-2P emulsions are used as a polymer-modified emulsion, and then unmodified emulsion, the CRS-2, is compared for the evaluation of chip seal performance. For the fog seal performance evaluation, two types of polymer-modified emulsions (FPME-1 and FPME-2) and one of unmodified emulsion, the CSS-1H, are employed. All the tests are performed at different curing times and temperatures. RESULTS AND CONCLUSIONS : Overall, PMEs show better curing and adhesive behavior than non-PMEs regardless of treatments types. Especially, the curing and adhesive behavior of PMEs is much better than non-PMEs before 120 minutes of curing time. Since all the test results indicate that after 120 minutes of curing time the curing adhesive behavior of emulsions, the early curing time, i.e., 120 minutes, plays an important role in the performance of chip seals and fog seals.