• Title/Summary/Keyword: chicken breasts

Search Result 41, Processing Time 0.03 seconds

Comparison of the Quality of the Chicken Breasts from Organically and Conventionally Reared Chickens

  • Kim, Dong-Hun;Cho, Soo-Hyun;Kim, Jin-Hyoung;Seong, Pil-Nam;Lee, Jong-Moon;Jo, Cheor-Un;Lim, Dong-Gyun
    • Food Science of Animal Resources
    • /
    • v.29 no.4
    • /
    • pp.409-414
    • /
    • 2009
  • In this study, the quality of chicken breasts from organically reared chickens was compared with that of chicken breasts from conventionally reared chickens. Broilers were raised in an indoor pen with conventional and organic production system, respectively. The diet formulation for the organically reared chickens and the production density were in accordance with the guidelines for organic chicken products. Twenty birds from each group were slaughtered and their breasts were obtained for analysis. The organic chicken breasts had a higher cooking loss, and waterholding capacity, and a lower shear force (p<0.05) compared to the conventional chicken breasts. The organic chicken breasts also showed higher $a^{\ast}$ and $b^{\ast}$ values and myoglobin contents compared with the conventional chicken breasts (p<0.05). In the fatty-acid analysis, the organic chicken breasts resulted in higher polyunsaturated fatty acid (PUFA) and unsaturated fatty acid contents, and a higher PUFA-saturated fatty acid ratio.

Effect of Chlorine Dioxide Treatment on Microbial Growth and Qualities of Chicken Breast

  • Ko, Jong-Kwan;Ma, Yu-Hyun;Song, Kyung-Bin
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.2
    • /
    • pp.122-129
    • /
    • 2005
  • Chlorine dioxide $(ClO_2)$ treatment was evaluated for microbial growth inhibition and its effects on the quality of vacuum-packaged chicken breasts. Chicken breast samples were treated with 3, 50, and 100 ppm of $ClO_2$ solution, respectively. After $ClO_2$ treatment, chicken breast samples were individually vacuum-packaged and stored at $4^{\circ}C$, a typical storage temperature for meat and meat product, for 7 days. The vacuum-packaged chicken breasts treated with $ClO_2$ had significantly lower total bacteria, yeast and mold, total coliform, and Salmonella spp. were significantly reduced by $ClO_2$ treatment. $D_{10}-values$ of total bacteria count, yeast and mold, total coliform, and Salmonella spp. in vacuum-packaged chicken breasts was 93, 83, 85, and 50 ppm, respectively. The pH of vacuum-packaged chicken breasts decreased with increasing $ClO_2$ concentration. Thiobarbituric acid reacted substance (TBARS) values of vacuum-packaged chicken breasts increased during storage, regardless of $ClO_2$ concentration. $ClO_2$ treatment caused negligible changes in Hunter L, a, and b values in the vacuum-packaged chicken breasts. Sensory evaluation of the vacuum-packaged chicken breasts showed that there were no significant changes among the samples treated with various $ClO_2$ concentration. These results indicate that $ClO_2$ treatment could be useful in improving the microbial safety and quality of meat products.

Effect of Electron Beam Irradiation on the Microbial Growth and Qualities of Chicken Breast (전자선 조사가 진공 포장된 계육 가슴살의 미생물학적 변화 및 품질에 미치는 영향)

  • Ko, Jong-Kwan;Ma, Yu-Hyun;Song, Kyung-Bin
    • Applied Biological Chemistry
    • /
    • v.48 no.2
    • /
    • pp.120-127
    • /
    • 2005
  • Electron beam irradiation was applied to examine the microbial growth and qualities of vacuum-packaged chicken breasts. Chicken breast samples were irradiated at dose of 2, 4, 8, 12, and 16 kGy, respectively. After irradiation, chicken breast samples were individually vacuum-packaged and stored at $4^{\circ}C$. Microbiological change of irradiated vacuum-packaged chicken breasts showed that populations of total bacteria, yeast and mold, total coliform, and salmonella spp. in chicken breasts were significantly reduced with increasing irradiation dose. The pH values of vacuum-packaged chicken breasts were not significantly changed among treatments. Lipid oxidation measurements showed that TBARS values of vacuum-packaged chicken breasts increased with increase of irradiation dose, and gradually increased during storage. Color measurements showed that irradiation reduced Hunter a value of vacuum-packaged chicken breasts with increasing irradiation dose. However, Hunter L and b values of vacuum-packaged chicken breasts were not significantly altered among treatments. Sensory quality results of vacuum-packaged chicken breasts showed that there were no significant changes among the samples irradiated. These results indicate that irradiation can be used to improve the microbial safety and qualities of poultry products.

Nutritional Analysis of Chicken Parts (닭고기의 부위별 영양 성분 분석)

  • Koh, Ha-Young;Yu, Ick-Jong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.7
    • /
    • pp.1028-1034
    • /
    • 2015
  • General composition and cholesterol contents of chicken 4 parts (breasts, thighs, legs without skin, and wings with skin) were analyzed. Fatty acids, amino acids, and mineral contents of breasts and thighs were also analyzed and compared with sirloin parts of beef and pork. Lipid contents of chicken parts (1.2% in breasts, 2.8% in thighs, and 14.9% in wings) were lower than those of beef and pork. Protein contents of chicken parts (22.9% in breasts, 19.7% in thighs, and 17.6% in wings) were higher than those of beef and pork. Cholesterol contents of chicken parts (99.0 mg% in wings, 80.8 mg% in thighs, and 56.7 mg% in breasts) were higher than those of beef and pork. However, saturated fatty acid contents of chicken (31.6~32.9%) was lower than those of beef (40.8%) and pork (42.7%). In the meanwhile, unsaturated fatty acid contents of chicken (67.1~68.4%) was higher than those of beef (59.2%) and pork (57.3%). Essential fatty acid contents of chicken (16.6~16.9%) were 1.6 times as high as that of pork (10.4%) and 5 times as high as that of beef (3.9%). Major amino acids composition were glutamic acid, aspartic acid, lysine, and leucine. Ten essential amino acid contents were 11,860 mg% in breasts and 10,454 mg% in thighs, and the ratio of essential amino acids (41.7~44.1%) was similar to those of pork and beef. Mineral contents of chicken were similar to those of pork and beef despites of slight different mineral contents in thighs and breasts.

Effect of NaCl Concentration and Cooking Temperature on the Color and Pigment Characteristics of Presalted Ground Chicken Breasts

  • Bae, Su Min;Cho, Min Guk;Hong, Gi Taek;Jeong, Jong Youn
    • Food Science of Animal Resources
    • /
    • v.38 no.2
    • /
    • pp.417-430
    • /
    • 2018
  • This study was conducted to determine the effects of NaCl concentration and cooking temperature on the color and pigment characteristics of presalted ground chicken breasts. Four treatments with different salt concentrations (0%, 1%, 2%, and 3%) were prepared and stored for 7 d prior to cooking. Each sample was cooked to four endpoint temperatures ($70^{\circ}C$, $75^{\circ}C$, $80^{\circ}C$, and $85^{\circ}C$). The salt concentration affected the color and pigment properties of the cooked ground chicken breasts. As the salt concentration increased, the cooking yield and residual nitrite content also increased. However, the samples with 1%, 2%, and 3% NaCl showed similar nitrosyl hemochrome and total pigment contents. Among the products containing salt, the samples with 3% NaCl showed the lowest percentage myoglobin denaturation (PMD) and the lowest CIE $a^*$ values. The cooking temperature had limited effects on the pigment properties of cooked ground chicken breasts. The oxidation-reduction potential and residual nitrite contents increased with cooking temperature, while the PMD, nitrosyl hemochrome, total pigment contents and CIE $a^*$ values were similar in the samples cooked at different temperatures. These results indicated that the addition of up to 2% salt to ground chicken breasts and storage for 7 d could cause the pink color defect of cooked products. However, the addition of 3% NaCl could reduce the redness of the cooked products.

Effects of Astragalus membranaceus, Adenophora triphylla, and Ulmus pumila Extracts on Quality Characteristics and Storage Stability of Sous-Vide Cooked Chicken Breasts

  • Lee, Boin;Park, Chun Ho;Kim, Jae Yeong;O, Hyeonbin;Kim, Dasol;Cho, Dong Kook;Kim, Young Soon;Choi, Young Min
    • Food Science of Animal Resources
    • /
    • v.41 no.4
    • /
    • pp.664-673
    • /
    • 2021
  • This study aimed to investigate the influence of Astragalus membranaceus (AM), Adenophora triphylla (AT), and Ulmus pumila (UP) extracts on the quality traits, palatability, and storage stability of sous-vide (SV) cooked chicken breasts. Chicken breasts were marinated in AM, AT, or UP extracts for 1 h, and then consistently cooked at a constant temperature of 60℃ for 2 h. SV cooked chicken breasts with the UP extract exhibited lower lightness and higher yellowness values on the surface region compared to those with the AM and AT extracts (p<0.05). The control and UP groups displayed a similar overall visual acceptability (p>0.05), although the UP group had lower color acceptability (p<0.01). The UP group also had higher flavor and lower off-flavor intensities compared to the control group (p<0.05), although similar scores were observed in tenderness attributes and juiciness among the groups (p>0.05). Owing to these results regarding overall sensory acceptability, samples from the UP group were more preferred by the trained panelists compared to samples from the control group (p<0.001). On 14 d of cold storage, all the groups with herbal medicinal extracts exhibited a lower concentration of thiobarbituric acid-reactive substances than the control group (p<0.05), and the AT and UP groups showed lower values compared to the AM group due to their higher flavonoid contents (p<0.001). Therefore, meat marination with herbal plant extracts before SV cooking can be effective for enhancing the overall quality of SV cooked chicken breast.

Effects of Short-Term Presalting and Salt Level on the Development of Pink Color in Cooked Chicken Breasts

  • Jeong, Jong Youn
    • Food Science of Animal Resources
    • /
    • v.37 no.1
    • /
    • pp.98-104
    • /
    • 2017
  • The objective of this study was to determine the effects of short-term presalting on pink color and pigment characteristics in ground chicken breasts after cooking. Four salt levels (0%, 1%, 2%, and 3%) were presalted and stored for 0 and 3 d prior to cooking. Cooking yield was increased as salt level was increased. However, no significant differences in pH values or oxidation reduction potential (ORP) of cooked chicken breasts were observed. Cooked products with more than 2% of salt level had less redder (lower CIE $a^*$ value) on day 3 than on those on day 0. As salt level was increased to 2%, myoglobin was denatured greatly. Myoglobin denaturation was leveled off when samples had 3% of salt. With increasing salt levels, residual nitrite contents were increased while nitrosyl hemochrome contents were decreased. These results demonstrate that salt addition to a level of more than 2% to ground meat may reduce the redness of cooked products and that presalting storage longer than 3 d should be employed to develop a natural pink color of ground chicken products when less than 1% salt is added to ground chicken meat.

The Effects of Addition Timing of NaCl and Sodium Tripolyphosphate and Cooking Rate on Pink Color in Cooked Ground Chicken Breasts

  • Bae, Su Min;Cho, Min Guk;Jeong, Jong Youn
    • Food Science of Animal Resources
    • /
    • v.40 no.2
    • /
    • pp.231-241
    • /
    • 2020
  • The current study investigated the effects of timing of NaCl (2%) and sodium tripolyphosphate (STPP, 0.5%) addition and cooking rates on color and pigment properties of ground chicken breasts. Four treatments were tested as follows: treatment 1, no NaCl and STPP added and stored for 7 d; treatment 2, NaCl+STPP added on 0 d and stored for 7 d; treatment 3, NaCl added on 0 d and STPP added on 7 d; and treatment 4, stored for 7 d and NaCl+STPP added. All samples were cooked at a fast (5.67℃/min) or slow cooking rate (2.16℃/min). Regardless of the timing of NaCl and STPP addition, reflectance ratios of nitrosyl hemochrome, cooking yield, pH values, oxidation-reduction potential, and percent myoglobin denaturation were similar (p>0.05) across treatments 2, 3, and 4. The highest CIE a values were observed in treatment 4 (p<0.05), while treatment 2 was effective in reducing the redness in cooked chicken products. The fast cooking rate resulted in lower CIE a values and higher CIE L values and cooking yield in cooked chicken breasts compared to the slow cooking rate. Our results indicate that adding NaCl and STPP to meat, followed by storing and cooking at a fast rate, may result in inhibiting the pink color defect sporadically occurred in cooked ground chicken breasts.

Presalting Condition Effects on the Development of Pink Color in Cooked Ground Chicken Breasts

  • Bae, Su Min;Cho, Min Guk;Jeong, Jong Youn
    • Food Science of Animal Resources
    • /
    • v.40 no.2
    • /
    • pp.197-208
    • /
    • 2020
  • The effects of presalting conditions (storage temperature and duration) with/without sodium tripolyphosphate (STPP) on the color and pigment characteristics of cooked ground chicken breast were investigated. Meat mixtures containing 2% NaCl (control) or 2% NaCl and 0.5% STPP (STPP treatment) were stored for 0, 3, 5, 7, and 10 d at 2℃ or 7℃, followed by cooking to 75℃, and cooling and storage at 2℃-3℃ until further analysis. The treatment was the most effective on the pink color defect of all independent variables. The effect of storage temperature was only observed on CIE L values and percentage myoglobin denaturation (PMD). The control was redder than the STPP treated samples and the CIE a values increased (p<0.05) from 0 to 5 d in the control and STPP treated samples. Compared to the STPP treatment, the control exhibited increased reducing conditions (more negative oxidation reduction potential), lower undenatured myoglobin, and greater PMD. No differences in the cooking yields of the control and STPP-treated samples were observed for various storage durations. Products with STPP showed higher (p<0.05) pH values than those without STPP, but no differences (p>0.05) in PMD were observed over the storage period in the control and STPP treated samples, except for day 0. Thus, STPP is effective at reducing the pink color in cooked chicken breasts. In addition, presalting for longer than 5 d resulted in increased pink color of the cooked chicken breasts.

Studies on Physico-chemical Properties of Chicken Meat Cooked in Electric Oven Combined with Superheated Steam (전기오븐에서 과열증기주입에 따른 열처리가 닭고기의 이화학적 특성변화에 미치는 영향)

  • Chun, Ji-Yeon;Kwon, Bong-Gu;Lee, Su-Hyun;Min, Sang-Gi;Hong, Geun-Pyo
    • Food Science of Animal Resources
    • /
    • v.33 no.1
    • /
    • pp.103-108
    • /
    • 2013
  • This study was carried out to observe the effect of superheated steam combined with oven heating on the physico-chemical and sensory properties of chicken meat. Specially, chicken breasts and thighs were heated for 40 min in various heating formulations such as oven heating, superheated steam heating or a combination of two kinds of heating. In the physical properties measurement, the shear force was increased as superheated steam heating time and chicken thighs were higher than chicken breasts in all treatments (p<0.05). The highest level of water holding capacity was solely superheated steam treated chicken for 40 min (p<0.05). The $L^*$ value was decreased but $a^*$ value or $b^*$ value were increased after cooking. Chicken breast exhibited a higher colour value than chicken thigh. Superheated heating was effective to reduce heating loss as 22.64% (p<0.05). However, pH was not different depending on the heating formulation or part of the chicken meat (p>0.05). In the sensory test, the combination of 10 min oven heating and 30 min superheated steam heating was effective to create a good flavour of chicken meat. In this study, an optimum formulation was developed which was a combination of 10 min oven heating and 30 min superheated steam heating. It was more effective to improve the quality of chicken meat than the single heat treatment of chicken meat.