• Title/Summary/Keyword: chevron angle

Search Result 88, Processing Time 0.028 seconds

An Experimental Study on Steering Performance of Tracked Vehicle on Deep-sea Cohesive Soft Soil by DOE using Orthogonal Arrays (직교배열표 실험계획법에 의한 심해저 점착성 연약지반용 무한궤도차량의 선회성능에 대한 실험 연구)

  • Choi, Jong-Su;Hong, Sup;Kim, Hyung-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.4 s.71
    • /
    • pp.37-42
    • /
    • 2006
  • This paper is concerned with experimental investigation of steering performance of a tracked vehicle on extremely soft soil. A tracked vehicle model with principal dimensions of 0.9 m(L)x0.75 m(B)x0.4 m(H) and weight of 167 kg was constructed with a pair of driving chain links, driven by two AC-servo motors. The tracks were configured with detachable grousers with variable span. A deep seabed was simulated by means of a bentonite-water mixture in a soil bin of 6.0 m(L)x3.7 m(B)x0.7 m(H). The turning radii of vehicle and driving torques of motors were measured with respect to experiment variables: steering ratio, driving speed, grouser chevron angle, grouser span, and grouser height. L8 orthogonal table is adopted for DOE (Design of experiment). The effects of experiment variables on steering performance are evaluated.

Condensation Heat Transfer and Pressure Drop of R245fa in a Plate-shell Heat Exchanger (Plate-shell 열교환기에서 R245fa의 응축열전달 및 압력강하 특성에 관한 연구)

  • Kim, Sung Woo;Baek, Changhyun;Song, Kang Sub;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.12
    • /
    • pp.495-501
    • /
    • 2016
  • Condensation heat transfer and pressure drop of R245fa were investigated experimentally in a plate-shell heat exchanger which consisted of thirty seven counter flow channels formed by thirty-eight plates with a chevron angle of $50^{\circ}$. The upflow of the water in one channel receives heat from the downflow of R245fa in the other. The effects of refrigerant mass flux, imposed heat flux, refrigerant saturation pressure, and mean vapor quality on the heat transfer characteristics were explored in detail. Experimental correlations were proposed to predict the condensation heat transfer coefficient and friction factor in terms of the Boiling number, Reynolds number, and Prandtl number. In the experiments, the mean vapor quality in the refrigerant channel was varied from .22 to .82, mass flux from 3 to $5kg/m^2$, imposed heat flux from 1 to $3kW/m^2$, and system pressure from .61 to .81 MPa.

The Effect of Sesamoid Position on Results of Treatment for Hallux Valgus (무지외반증에서 종자골 전이 정도가 치료결과에 미치는 영향)

  • Yoo, Chong-Il;Lee, Dong-Ho;Kim, Hui-Taek
    • Journal of Korean Foot and Ankle Society
    • /
    • v.8 no.2
    • /
    • pp.131-137
    • /
    • 2004
  • Purpose: We evaluated the results of various surgical treatments for hallux valgus with and without attempting to correct sesamoid subluxation. Materials and Methods: Thirty-one cases in 26 patients were involved in this study: Group I (15 cases) - surgery performed only to correct the hallux valgus angle (HVA) and the first-second intermetatarsal angle (IMA) in AP view; Group II (16 cases) - surgery performed to correct HVA and IMA and also to reduce the subluxation of sesamoid. The degree of sesamoid subluxation was measured from a pre- and intraoperative sesamoid tangential views. For both groups, we analysed the status of the sesamoid in pre- and postoperative radiographs and performed clinical evaluation using the Mayo clinic forefoot scoring system. Results: The average amount of correction during postoperative period and loss of correction at last follow-up in the sesamoid tangential view were as follows: soft tissue procedures (5 cases) - group I: grade $1.0{\pm}0.4/1.5{\pm}0.3$ and group II: grade $2.0{\pm}0.9/0.5{\pm}0.08$; chevron osteotomy (12 cases) - group I: grade $1.0{\pm}0.5/1.2{\pm}0.3$ and group II: grade $2.2{\pm}0.7/0.9{\pm}0.2$; proximal metatarsal osteotomy (14 cases) - group I: grade $4.0{\pm}0.4/1{\pm}0.2$ and group II: grade $4.7{\pm}1.1/0.8{\pm}0.1$. In clinical evaluation, more than 93% of the feet had a good result in both groups. The analysis of these data for each treatment type did not show any statistically significant differences between groups I and II. Conclusion: The radiologic and clinical results did not validate our attempts to reduce the sesamoid during surgery.

  • PDF

Study on Characteristics of Heat Transfer and Flow in Plate Heat Exchanger (판형 열교환기의 열전달과 유동특성에 대한 연구)

  • Jin, Zhen-Hua;Lee, Kwang-Sung;Ji, Myoung-Kuk;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1476-1483
    • /
    • 2009
  • In present work, experiments conducted to investigate the heat transfer characteristics and relationship between operating parameters and production of fresh water as output of the system. Plate Heat Exchanger (PHE) applied in vacuum evaporator for product fresh water that system intended to efficiently use low grade heat. PHE have become popular in chemical, power, food and refrigeration industries due to the efficient heat transfer performance, extremely compact design and flexibility of extend or modify to suit changed duty. The heat transfer part contains corrugated plates with 60 degree of chevron angle which verified by many researchers and commonly apply. Fresh water can be produced from saline water under near vacuum pressure by operating ejector. Consequently, evaporating temperature stay around $51-57^{\circ}C$ so it is possible to use any low grade heat source or renewable source. The maximum fresh water produced by freshwater generator with plat heat exchanger applied in the study was designed as 1.0 Ton/day.

  • PDF

Evaporation Heat Transfer and Pressure Drop Characteristics of R-134a in the Oblong Shell and Plate Heat Exchanger

  • Park, Jae-Hong;Kim, Young-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2284-2293
    • /
    • 2004
  • The evaporation heat transfer coefficient h$\_$r/ and frictional pressure drop Δp$\_$f/ of refrigerant R-134a flowing in the oblong shell and plate heat exchanger were investigated experimentally in this study. Four vertical counterflow channels were formed in the oblong shell and plate heat exchanger by four plates of geometry with a corrugated sinusoid shape of a 45 chevron angle. Upflow of refrigerant R-134a boils in two channels receiving heat from downflow of hot water in other channels. The effects of the refrigerant mass flux, average heat flux, refrigerant saturation temperature and vapor quality of R-134a were explored in detail. Similar to the case of a plate heat exchanger, even at a very low Reynolds number, the flow in the oblong shell and plate heat exchanger remains turbulent. The results indicate that the evaporation heat transfer coefficient h$\_$r/ and pressure drop Δp$\_$f/ increase with the vapor quality. A rise in the refrigerant mass flux causes an increase in the h$\_$r/ and Δp$\_$f/. But the effect of the average heat flux does not show significant effect on the h$\_$r/ and Δp$\_$f/. Finally, at a higher saturation temperature, both the h$\_$r/ and Δp$\_$f/ are found to be lower. The empirical correlations are also provided for the measured heat transfer coefficient and pressure drop in terms of the Nusselt number and friction factor.

Study on Evaporation Heat Transfer of R-l34a, R-407C, and R-410A in the Oblong Shell and Plate Heat Exchanger (오블롱 셀 플레이트 열교환기에서의 R-l34a, R-407C, R-410A의 증발 열전달에 관한 실험적 연구)

  • 박재홍;김영수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.9
    • /
    • pp.845-854
    • /
    • 2004
  • The evaporation heat transfer coefficient for R-l34a, R-407C (a mixture of 23wt% R-32, 25 wt% R-125, and 52 wt% R-l34a) and R-410A (a mixture of 50 wt% R-32 and 50 wt% R-125) flowing in the oblong shell and plate heat exchanger were investigated experimentally in this study. Four vertical counterflow channels were formed in the exchanger by four plates of commercial geometry with a corrugated sinusoid shape of a chevron angle of 45 degree. The effects of the mean vapor quality, mass flux, heat flux, and saturation temperature of different refrigerants on the evaporation heat transfer were explored in detail. Similar to the case of a Plate heat exchanger, even at a very low Reynolds number, the flow in the oblong shell and plate heat exchanger remains turbulent. It is found that the evaporation heat transfer coefficient in the plates is much higher than that in circular pipes. The present data show that the evaporation heat transfer coefficients of all refrigerants increase with the vapor quality. At a higher mass flux h, is higher than for the entire range of the vapor quality. Raising the imposed wall heat flux was found to slightly improve h$_{r}$, while h$_{r}$ is found to be lower at a higher refrigerant saturation temperature. A comparison of the performance of the various refrigerants reveals that R-410A has the highest heat transfer performance followed by R-l34a, and R-407C had the lowest performance of the refrigerants tested. Based on the present data, empirical correlations of the evaporation heat transfer coefficient were proposed.sed.

Condensation Heat Transfer and Pressure Drop of R-134a in the Oblong Shell and Plate Heat Exchanger

  • Park Jae-Hong;Kim Young-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.3
    • /
    • pp.158-167
    • /
    • 2004
  • Condensation heat transfer experiments were conducted with a oblong shell and plate heat exchanger without oil in a refrigerant loop using R-134a. An experimental refrigerant loop has been developed to measure the condensation heat transfer coefficient $h_r$ and frictional pressure drop ${\Delta}p_f$ of R-134a in a vertical oblong shell and plate heat exchanger. Four vertical counter flow channels were formed in the oblong shell and plate heat exchanger by four plates having a corrugated sinusoid shape of a $45^{\circ}$ chevron angle. The effects of the refrigerant mass flux, average heat flux, refrigerant saturation temperature and vapor quality were explored in detail. Similar to the case of a plate heat exchanger, even at a very low Reynolds number, the flow in the oblong shell and plate heat exchanger remains turbulent. The results indicate that the condensation heat transfer coefficients and pressure drops increase with the vapor quality. A rise in the refrigerant mass flux causes an increase in the $h_r\;and\;{\Delta}p_f$. Also, a rise in the average heat flux causes an increase in the $h_r$. But the effect of the average heat flux does not show significant effect on the ${\Delta}p_f$. On the other hand, at a higher saturation temperature, both the $h_r\;and\;{\Delta}p_f$. found to be lower. Based on the present data, the empirical correlations are provided in terms of the Nusselt number and friction factor.

GEOPHYSICAL EXPLORATION FOR THE SITE CHARACTERISTICS OF THE WESTERN THREE-STORY STONE PAGODA IN GAMEUM TEMPLE ( 감은사지 3층석탑(서탑)의 지반 특성을 위한 지구물리탐사)

  • Seo,Man-Cheol;Choe,Hui-Su;Lee,Chan-Hui;O,Jin-Yong
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.1
    • /
    • pp.39-46
    • /
    • 2003
  • Twin stone pagodas of the ruins of Kamunsa temple at Kyongju city, Kyungsangbukdo were believed to be built in 682 during the Unified Shilla Kingdom. The 13.4-m-high granodiolite pagodas with the base of 6.78 m x 4.4 m are the largest three-story stone pagoda in Korea. The western pagoda which was re-organized in 1959 is observed to be on the process of severe weathering. Also, some stone contacts are represented by the shape of sharp chevron, which is probably caused by the uneven loading due to the structural unbalance. For the structure-safety diagnosis of the western pagoda, it is necessary to understand its site characteristics and surrounding subsurface environment. Combined geophysical survey such as seismic and resistivity methods was carried out around the western pagoda. The range of 55∼350 Ωm is shown around the pagoda from the electrical resistivity mapping by the Wenner method. The higher resistivities occur the southwestern area, while the lower (<100 Ωm) values indicating the weaker subsurface appear to be on the northeastern area. This result coincides with the measurement of a leaning angle of the pagoda. Along 6 seismic lines, about 3-m-thick uppermost section around the pagoda shows the P-wave velocity of 200∼700 m/s from the refraction survey. Based on the integrated geophysical survey, the foundation of the pagoda is estimated to be in the form of 11-m-side square down to the depth of 3 m.

  • PDF