• 제목/요약/키워드: chemotherapeutic drugs

검색결과 127건 처리시간 0.03초

인체대장암 세포에서 후성적 유전자 불활성화 저해제와 5-Fluorouracil의 병용효과분석 (Combinatorial Effect of 5-FU and Epigenetic Silencing Repressors in Human Colorectal Cancer Cells)

  • 김미영;손정규;이숙경;구효정
    • 약학회지
    • /
    • 제49권6호
    • /
    • pp.511-517
    • /
    • 2005
  • Low sensitivity to anticancer drugs such as 5-fluorouracil (5-FU) has been associated with decreased expression of genes involved in cell proliferation, apoptosis and metastasis. Recently, it has been shown that the expression levels of some of these genes are reduced by transcription inhibition due to epigenetic silencing on CpG islands. Therefore, epigenetic therapy has been proposed, where epigenetic silencing is repressed with DNA methyltransferase (DNMT) inhibitors and histone deacetylase (HDAC) inhibitors alone or in combination with other chemotherapeutic agents. The aim of our study was to evaluate the combination effect of 5-FU and its association with the status of epigenetic silencing using methylation-specific PCR of $p14^{ARF}$ when given with S-aza-2'-deoxycytidine (5-aza-dC), a DNMT inhibitor and depsipeptide, an HDAC inhibitor in DLD-1 human colorectal cancer cells. The combination of 5-aza-dC with depsipeptide showed a synergism and induced unmethylation of $p14^{ARF}$. However, triplet combination of 5-aza-dc/depsipeptide and 5-FU resulted in antagonistic effects and abrogated unmethylation of $p14^{ARF}$. These results suggest that unfavorable interaction of 5-aza-dC/depsipeptide with 5-FU in DLD-1 cells may be related with the failure in repression of epigenetic silencing, which warrants further investigation.

5-Fluorouracil과 Capsaicin의 병용에 의한 HT-29 대장암세포 사멸 증진 효과 (Combined Treatment with 5-Fluorouracil and Capsaicin Induces Apoptosis in HT-29 Human Colon Cancer Cells)

  • 이윤석;이종숙;김정애
    • 약학회지
    • /
    • 제53권4호
    • /
    • pp.184-188
    • /
    • 2009
  • Fluorouracil (5-FU) is one of the most widely used chemotherapeutic drugs in the treatment of advanced colorectal cancer patients. Capsaicin (N-vanillyl-8-methyl-alpha-nonenamide), a spicy component of hot pepper, is a homovanillic acid derivative that preferentially induces cancer cells to undergo apoptosis. The purpose of the present study is to examine whether capsaicin enhances the anticancer effect of 5-fluorouracil in HT-29 human colon cancer cells by inducing apoptosis, and whether PPARgamma is involved in the capsaicin action in combination treatment with 5-FU. Treatment of the cells with either 5-FU or capsaicin alone for 48 h had little effect on the cell viability up to $50{\mu}M$ concentration, whereas co-treatment of the cells with capsaicin in the presence of 5-FU for 48 h significantly decreased the cell viability in a concentration-dependent manner. In addition, caspase-3 activity, a marker enzyme for apoptosis, was significantly increased by the combined treatment with 5-FU and capsaicin compared to the 5-FU or capsaicin alone treatment. Also, treatment with troglitazone, a peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) agonist, further enhanced the effect of the combination treatment on the cell viability and caspase-3 activity, and bisphenol A diglycidyl ether (BADGE), a $PPAR{\gamma}$ antagonist, blocked the effect of the combination treatment. These results suggest that the combination treatment of HT-29 cells with 5-FU and capsaicin induces apoptotic cell death at relatively low concentration than each drug alone, and the combination treatment may be associated with the $PPAR{\gamma}$ pathway activation.

백서 태자 두개관세포에서 인삼 사포닌에 의한 MMP-13 mRNA 발현 억제 (Inhibition of MMP-13 mRNA expression by ginseng saponin in fetal rat calvarial cells)

  • 김양이;최득철;김영준
    • Journal of Periodontal and Implant Science
    • /
    • 제35권2호
    • /
    • pp.277-288
    • /
    • 2005
  • There is a potential role of collagenase-3 in alveolar bone loss and periodontal disease progression, we need to develope or find chemotherapeutic drugs or herbal agents which may regulate the expression of MMP-13. Ginseng saponin, one of the major components of Korea ginseng(panax ginseng) root, has many various biologic effects, such as cytotoxic effect, tumoricidal effects, cytokine regulations, and protein biosynthesis effect. The purpose of this study was to determine the effects of Korea red ginseng saponin on MMP-13 gene expression in osteoblasts. The experimental groups were cultured with ginseng saponin in concentration of 1.0, 10, 25, 50, 100, 250 and $500{\mu}g/ml$ for MTT assay. Primary rat calvarial cells were pre-treated for 1 hour with ginseng saponin(100 ${\mu}g/ml$) and then stimulated with $IL-1{\beta}(1.0ng/ml)$ and PTH(10 nM). MMP-13 gene expression was evaluated by RT-PCR. The results were as follows: Ginseng saponin was cytotoxic to osteoblast at concentration exceeding $250{\mu}g/ml$ for longer than 24 hours in tissue culture(p<0.01). In RT-PCR analysis, steady state MMP-13 mRNA levels were increased approximately 350% by $IL-1{\beta}$, and 400% by PTH when normalized to untreated control. $IL-1{\beta}-indued$ MMP-13 mRNA expression was reduced 50% by pretreatment with ginseng saponin. But ginseng saponin didn't inhibit MMP-13 expression from PTH stimulated cells. This results suggest that ginseng saponin Inhibit $IL-1{\beta}-indued$ MMP-13 mRNA expression.

Long-term cardiac composite risk following adjuvant treatment in breast cancer patients

  • Choi, Hong Bae;Yun, Sangchul;Cho, Sung Woo;Lee, Min Hyuk;Lee, Jihyoun;Park, Suyeon
    • 대한종양외과학회지
    • /
    • 제14권2호
    • /
    • pp.102-107
    • /
    • 2018
  • Purpose: Cardiotoxicity is a serious late complication of breast cancer treatment. Individual treatment risk of specific drugs has been investigated. However, studies on the evaluation of the composite risk of chemotherapeutic agents are limited. Methods: We retrospectively analyzed the medical records of breast cancer patients who received adjuvant treatment and had available serial echocardiography results. Patients were assigned to subgroups based on chemotherapy containing anthracyclines (A), anthracyclines and taxanes (A+T), and radiotherapy (RT). The development of cardiac disease and serial ejection fraction (EF) were reviewed. EF decline up to 10% from baseline was considered grade 1 cardiotoxicity and EF decline >20% or absolute value <50% was considered grade 2 cardiotoxicity. The most recent medical records and echocardiography results over 1 year of chemotherapy completion were also reviewed. Late cardiotoxicity was defined as a lack of recovery of EF decline or aggravated EF decline from baseline. Results: In total, 123 patients were evaluated. A small reduction in EF was observed after chemotherapy in both chemotherapy groups. There were no significant differences between groups A and A+T in EF decline following chemotherapy. We could not find any differences in composite risk between the chemotherapy groups and the RT group during follow-up. Late cardiotoxicity was seen in 15.45% of patients. During follow-up, three patients were diagnosed with dilated cardiomyopathy. Conclusion: There was no significant composite risk elevation following adjuvant treatment of breast cancer. However, late cardiotoxicity was considerable and further research in this direction is necessary.

Development of a Label-Free LC-MS/MS-Based Glucosylceramide Synthase Assay and Its Application to Inhibitors Screening for Ceramide-Related Diseases

  • Fu, Zhicheng;Yun, So Yoon;Won, Jong Hoon;Back, Moon Jung;Jang, Ji Min;Ha, Hae Chan;Lee, Hae Kyung;Shin, In Chul;Kim, Ju Yeun;Kim, Hee Soo;Kim, Dae Kyong
    • Biomolecules & Therapeutics
    • /
    • 제27권2호
    • /
    • pp.193-200
    • /
    • 2019
  • Ceramide metabolism is known to be an essential etiology for various diseases, such as atopic dermatitis and Gaucher disease. Glucosylceramide synthase (GCS) is a key enzyme for the synthesis of glucosylceramide (GlcCer), which is a main ceramide metabolism pathway in mammalian cells. In this article, we developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to determine GCS activity using synthetic non-natural sphingolipid C8-ceramide as a substrate. The reaction products, C8-GlcCer for GCS, could be separated on a C18 column by reverse-phase high-performance liquid chromatography (HPLC). Quantification was conducted using the multiple reaction monitoring (MRM) mode to monitor the precursor-to-product ion transitions of m/z $588.6{\rightarrow}264.4$ for C8-GlcCer at positive ionization mode. The calibration curve was established over the range of 0.625-160 ng/mL, and the correlation coefficient was larger than 0.999. This method was successfully applied to detect GCS in the human hepatocellular carcinoma cell line (HepG2 cells) and mouse peripheral blood mononuclear cells. We also evaluated the inhibition degree of a known GCS inhibitor 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) on GCS enzymatic activity and proved that this method could be successfully applied to GCS inhibitor screening of preventive and therapeutic drugs for ceramide metabolism diseases, such as atopic dermatitis and Gaucher disease.

The Endoplasmic Reticulum Stress Response Mediates Shikonin-Induced Apoptosis of 5-Fluorouracil-Resistant Colorectal Cancer Cells

  • Piao, Mei Jing;Han, Xia;Kang, Kyoung Ah;Fernando, Pincha Devage Sameera Madushan;Herath, Herath Mudiyanselage Udari Lakmini;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • 제30권3호
    • /
    • pp.265-273
    • /
    • 2022
  • Resistance to chemotherapeutic drugs is a significant problem in the treatment of colorectal cancer, resulting in low response rates and decreased survival. Recent studies have shown that shikonin, a naphthoquinone derivative, promotes apoptosis in colon cancer cells and cisplatin-resistant ovarian cells, raising the possibility that this compound may be effective in drug-resistant colorectal cancer. The aim of this study was to characterize the molecular mechanisms underpinning shikonin-induced apoptosis, with a focus on endoplasmic reticulum (ER) stress, in a 5-fluorouracil-resistant colorectal cancer cell line, SNU-C5/5-FUR. Our results showed that shikonin significantly increased the proportion of sub-G1 cells and DNA fragmentation and that shikonin-induced apoptosis is mediated by mitochondrial Ca2+ accumulation. Shikonin treatment also increased the expression of ER-related proteins, such as glucose regulatory protein 78 (GRP78), phospho-protein kinase RNA-like ER kinase (PERK), phospho-eukaryotic initiation factor 2 (eIF2α), phospho-phosphoinositol-requiring protein-1 (IRE1), spliced X-box-binding protein-1 (XBP-1), cleaved caspase-12, and C/EBP-homologous protein (CHOP). In addition, siRNA-mediated knockdown of CHOP attenuated shikonin-induced apoptosis, as did the ER stress inhibitor TUDCA. These data suggest that ER stress is a key factor mediating the cytotoxic effect of shikonin in SNU-C5/5-FUR cells. Our findings provide an evidence for a mechanism in which ER stress leads to apoptosis in shikonin-treated SNU-C5/5-FUR cells. Our study provides evidence to support further investigations on shikonin as a therapeutic option for 5-fluorouracil-resistant colorectal cancer.

Antimalarial Efficacy of Aqueous Extract of Strychnos ligustrina and Its Combination with Dihydroartemisinin and Piperaquine Phosphate (DHP) against Plasmodium berghei Infection

  • Cahyaningsih, Umi;Sa'diah, Siti;Syafii, Wasrin;Sari, Rita Kartika;Maring, Abdul Jafar;Nugraha, Arifin Budiman
    • Parasites, Hosts and Diseases
    • /
    • 제60권5호
    • /
    • pp.339-344
    • /
    • 2022
  • The development of drug resistance is one of the most severe concerns of malaria control because it increases the risk of malaria morbidity and death. A new candidate drug with antiplasmodial activity is urgently needed. This study evaluated the efficacy of different dosages of aqueous extract of Strychnos ligustrina combined with dihydroartemisinin and piperaquine phosphate (DHP) against murine Plasmodium berghei infection. The BALB/c mice aged 6-8 weeks were divided into 6 groups, each consisting of 10 mice. The growth inhibition of compounds against P. berghei was monitored by calculating the percentage of parasitemia. The results showed that the mice receiving aqueous extract and combination treatment showed growth inhibition of P. berghei in 74% and 94%, respectively. S. ligustrina extract, which consisted of brucine and strychnine, effectively inhibited the multiplication of P. berghei. The treated mice showed improved hematology profiles, body weight, and temperature, as compared to control mice. Co-treatment with S. ligustrina extract and DHP revealed significant antimalarial and antipyretic effects. Our results provide prospects for further discovery of antimalarial drugs that may show more successful chemotherapeutic treatment.

Evaluation of Anti-cancer and Anti-proliferative Activity of Medicinal Plant Extracts (Saffron, Green Tea, Clove, Fenugreek) on Toll Like Receptors Pathway

  • Ajmal, Sidra;Shafqat, Mahwish;Ajmal, Laiba;Younas, Hooria;Tasadduq, Raazia;Mahmood, Nasir
    • Natural Product Sciences
    • /
    • 제28권3호
    • /
    • pp.121-129
    • /
    • 2022
  • Despite considerable efforts, cancer remains an aggressive killer worldwide. Chemotherapeutic drugs that are currently in use lead to destructive side effects and have not succeeded in fulfilling expectations. For centuries, medicinal plants are used for treating various diseases and are also known to have anticancer activity. The main aim of this research was to evaluate antiproliferative activity of saffron, clove, fenugreek, and green tea on Vero and MDA-MB-231 cell lines and to subsequently analyze the effect of these extracts on IRAK-4, TAK1, IKK-alpha, IKK-beta, NF-Kappa B, IRF3, IRF7 genes in Toll Like Receptors (TLRs) pathway. Antiproliferative assay was done by Neutral Red Dye uptake assay. Methanolic extract of green tea was found to be most effective against both cell lines as IC50 was achieved at least concentration of the extract. For molecular studies, MDAMB-231 cells were sensitized with methanolic extract of green tea at same IC50, and RT-PCR was performed to determine the relative expression of genes. Expression of IRAK-4, TAK1, IKK-beta, NF-Kappa B, IRF3 genes was down regulated and IRF7 and IKKalpha was upregulated. Green tea has a potential cytotoxic effect on both cell lines which was demonstrated by its effect on the expression of (TLRs) pathway genes.

Cytotoxic Effects on HL-60 Cells of Myosin Light Chain Kinase Inhibitor ML-7 Alone and in Combination with Flavonoids

  • Lee, Joong-Won;Kim, Yang-Jee;Choi, Young-Joo;Woo, Hae-Dong;Kim, Gye-Eun;Ha, Tae-Kyung;Lee, Young-Hyun;Chung, Hai-Won
    • Toxicological Research
    • /
    • 제25권4호
    • /
    • pp.181-188
    • /
    • 2009
  • Uncontrolled cell growth and increased cell proliferation are major features of cancer that are dependent on the stable structure and dynamics of the cytoskeleton. Since stable cytoskeleton structure and dynamics are partly regulated by myosin light chain kinase (MLCK), many current studies focused on MLCK inhibition as a chemotherapeutic target. As a potent and selective MLCK inhibitor, ML-7 [1-(5-iodonaphthalene-1-sulfonyl)-1 H-hexahydro-1,4-diazapine hydrochloride] is a promising candidate for an anticancer agent, which would induce apoptosis as well as prevents invasion and metastasis in certain types of cancer cells. This study assessed cytotoxic effects of ML-7 against HL-60 cells and therapeutic efficacy of ML-7 as a potential antileukemia agent. Trypan-blue exclusion assays showed dose- and time- dependent decreases in ML-7 treated HL-60 cells (p<0.05). Comet assays revealed a significant increase in DNA damage in HL-60 cells after treatment with $40{\mu}M$ ML-7 for 2h. Sub-G1 fractions, analyzed by flow cytometry increased in a dose-dependent manner, suggesting that ML-7 can induce apoptotic cell death in HL-60 cells. ML-7 was selectively cytotoxic towards HL-60 cells; not affecting normal human lymphocytes. That selective effect makes it a promising potential anti-leukemia agent. In addition, anticancer efficacy of ML-7 in combination with flavonoids (genistein or quercetin) or anticancer drugs (cisplatin or Ara-C) against HL-60 cells was assessed. Combination of ML-7 with flavonoids increased the anti-cancer effect of ML-7 to a greater extent than combination with the anticancer drugs. This implies that ML-7 in combination with flavonoids could increase the efficacy of anticancer treatment, while avoiding side effects cansed by conventional anticancer drug-containing combination chemotherapy.

NCI-H157 폐암 세포주에서 Caspase Cascade 활성을 통한 Arsenic Trioxide와 Sulindac 병합요법의 세포고사효과 (Inducing Apoptosis of NCI-H157 Human Lung Carcinoma Cells via Activation of Caspase Cascade by Combination Treatment with Arsenic Trioxide and Sulindac)

  • 김학렬;양세훈;정은택
    • Tuberculosis and Respiratory Diseases
    • /
    • 제56권4호
    • /
    • pp.381-392
    • /
    • 2004
  • 연구배경 : Arsenic trioxide($As_2O_3$)은 재발성 또는 불응성 급성전골수성백혈병의 치료제로 쓰이는 항암제로서 비소세포폐암을 포함한 다른 암세포주에도 효과가 있는 것으로 되어있다. NSAIDs는 항암 예방약제로 사용되고 있고, 세포고사를 통해 다른 항암제나 방사선치료의 반응성을 강화시키는 것으로 알려져 있다. 저자들은 NCI-H157 세포주에서 $As_2O_3$와 sulindac의 병합치료가 그것들의 세포고사를 배가시키는지 여부를 알아보고자 하였다. 방 법 : 세포 독성은 MTT 방법으로 측정하였고, 세포고사를 알아보기 위해 핵산 염색과 유식세포 분석을 시행하였다. 세포고사의 기전을 보기 위해 caspasefamily의 활성을 보았고, PARP와 ICAD의 분절을 western blotting으로 확인하였다. 또한 Fas와 Fas-L의 발현유무를 western blotting을 통해 관찰하였다. 결 과 : NCI-H157 폐암세포에 $As_2O_3$와 sulindac을 병합치료시 단독치료군에 비해 생존율이 의미 있게 감소하였고, 이러한 세포사는 핵산염색을 통한 염색사의 응축과 핵 분절 유도와 유식세포 분석에 의한 $sub-G_0/G_1$ DNA분획의 증가현상을 통해 세포고사에 의해 매개됨을 알 수 있었다. 세포고사의 유도에는 caspase 3, 8, 9를 통한 활성화와 이에 의한 PARP와 ICAD의 절단을 확인하였다. 또한 caspase-8 protease의 활성화에는 Fas와 Fas/L 단백질의 발현증가가 유도되었음을 알 수 있었다. 결 론 :NCI-H157 폐암세포주에 $As_2O_3$와 sulindac의 병합요법은 Fas/FasL 신호전달계의 활성화와 caspase 단백질 활성화 의해 세포고사가 유도되었다.