• Title/Summary/Keyword: chemoselective

Search Result 56, Processing Time 0.021 seconds

Rapid and Efficient Debromination of vic-Dibromides with VCl3/Indium System

  • Yoo, Byung Woo;Park, Jee Yeon;Shin, Hyo Jong
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.4
    • /
    • pp.275-278
    • /
    • 2018
  • The $VCl_3$/In system was found to be a new protocol for debromination of a variety of vic-dibromides to the corresponding alkenes in high yields with short reaction times under mild conditions. This new methodology is highly chemoselective, tolerating several functional groups such as chloro, bromo, fluoro, keto, ester, carboxyl, and methoxy groups.

Selective Reduction of Organic Compounds with Non-Free Hydride Reducing Agents

  • Cha, Jin Soon
    • Journal of Integrative Natural Science
    • /
    • v.1 no.3
    • /
    • pp.192-194
    • /
    • 2008
  • A series of non-free hydride reducing systems containing boron or aluminum atom, which possess no metal-hydride bond but an available hydrogen at a branched ${\beta}$-position, has been applied to the selective reduction (chemo--, regio-, and stereoselective reduction) of organic compounds. The systems, comprised of diisopinocampheylborane and diisobutylalane derivatives, exhibited almost perfect selectivities in the reduction of aldehydes and ketones. The characteristics features of this systems leading to a perfect transformation have been depicted in this report, especially in the 1) Reduction of ${\alpha}$,${\beta}$-Unsaturated Carbonyl Compounds to Allylic Alcohols via 1,2-Reduction, 2) Chemoselective Reduction between Structurally Different Carbonyl Compounds, and 3) Stereoselective Reduction of Cyclic Ketones.

  • PDF

Chemoselective Iodination of Alcohols with CeCl3·7H2O/NaI over SiO2 under Microwave Irradiation

  • Hosseinzadeh, Rahman;Tajbakhsh, Mahmood;Lasemi, Zahra;Sharifi, Ali
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.8
    • /
    • pp.1143-1146
    • /
    • 2004
  • A simple and effective procedure for conversion of primary, secondary, allylic and benzylic alcohols into the corresponding iodides is described using $CeCl_3{\cdot}7H_2O/NaI\;over\;SiO_2$ under microwave irradiation. Benzylic alcohols are selectively converted in the presence of saturated alcohols into their corresponding benzylic iodides under these conditions.

A Novel Method for Synthesis of Bis(indolyl)methanes Using 1,3-Dibromo-5,5-dimethylhydantoin as a Highly Efficient Catalyst Under Solvent-free Conditions

  • Hojati, Seyedeh Fatemeh;Zeinali, Toktam;Nematdoust, Zahra
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.117-120
    • /
    • 2013
  • The reactions of indole with carbonyl groups have been efficiently carried out in the presence of catalytic amounts of 1,3-dibromo-5,5-dimethylhydantoin under solvent-free conditions and corresponding bis(indolyl)-mathanes were obtained in good to excellent yields. Synthesis of di[bis(indolyl)methyl]benzene was also accomplished by this catalyst. Furthermore, chemoselective conversion of aromatic aldehydes to their corresponding bis(indolyl)methanes in the presence of aliphatic aldehydes or ketones was achieved by this method.

A Mild and Convenient Method for the Reduction of Carbonyl Compounds with NaBH4 in the Presence of Catalytic Amounts of MoCl5

  • Zeynizadeh, Behzad;Yahyaei, Saiedeh
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.11
    • /
    • pp.1664-1670
    • /
    • 2003
  • $NaBH_4$ with catalytic amounts of $MoCl_5$ can readily reduce a variety of carbonyl compounds such as aldehydes, ketones, acyloins, ${\alpha}$-diketones and conjugated enones to their corresponding alcohols in good to excellent yields. Reduction reactions were performed under aprotic condition in $CH_3CN$ at room temperature or reflux. In addition, the chemoselective reduction of aldehydes over ketones was accomplished successfully with this reducing system.

Novel Syntheses of Isomers of Damascenone from Ethyl 2,6,6-Trimethyl-4-oxo-2-cyclohexene-1-carboxylate

  • Lee, Woo-Young;Jang, Se-Young;Lee, Jun-Gu;Chae, Woo-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.1
    • /
    • pp.31-35
    • /
    • 1991
  • Three isomers of damascenone, odorous terpenic ketones, have been synthesized conveniently from a same starting material, ethyl 2,6,6-trimethyl-4-oxo-2-cyclohexene-1-carboxylate(1), which was easily available by the acid-catalyzed condensation of mesityl oxide or acetone with ethyl acetoacetate. ${\alpha}$-Damascenone(7) was prepared by converting the enone ester 1 into the corresponding tosylhydrazone(4), followed by treating with 4 molar equiv of allyllithium. ${\beta}$-Damascenone(12) was synthesized by chemoselective reduction of 1 with sodium borohydride/cerium chloride to give corresponding allylic alcohol 8, conversion of 8 into acetate 9, and thermal decomposition of 9 with DBU to afford ethyl ${\beta}$-safranate(10), followed by reaction with an excess amount of allyllithium. ${\gamma}$-Damascenone(15) was obtained by dehydration of 8 with boric acid to furnish ${\gamma}$-safranate(13), followed by treatment with 2 molar equiv of allyllithium.

A Convenient Allylation of 1,n-Dicarbonyl Compounds Using Organoindium Reagents

  • Lee, Pil Ho;DongSeo, Mun;Lee, Gu Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.12
    • /
    • pp.1380-1384
    • /
    • 2001
  • The chemoselective reactions of 1,n-dicarbonyl compounds with allyl halides using indium metal were investigated. $\alpha-Ketoesters$ such as ethyl pyruvate, ethyl 3-methyl-2-oxobutyrate and ethyl benzoylformate reacted with a variety of allyl halides i n the presence of indium to afford hydroxy unsaturated carbonyl compounds in good to excellent yields in MeOH/HCl at $25^{\circ}C.$ For the allyl bromide, the presence of various substituents at the $\alpha$ or $\gamma$ position exhibited little effects on both the reaction rates and yields. Ethyl acetoacetate or ethyl levulinate was treated with allylindium reagent to give hydroxy unsaturated carbonyl compounds in good yield. These results mean that both reactivity and selectivity are independent of the distance between carbonyl groups. 2,3-Butanedione or 1-phenyl-1,2-propanedione reacted with allylindium to produce monoallylation product as major compound.

Transformation of Carboxylic Acids and Their Derivatives into Aldehydes by Lithium Tris(dialkylamino)aluminum Hydrides

  • Cha Jin Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.6
    • /
    • pp.670-676
    • /
    • 1992
  • A systematic study of the partial reduction of carboxylic acids and their derivatives to the corresponding aldehydes with lithium tris(dialkylamino)aluminum hydrides under practical conditions has been carried out. The diethylaminosubstituted derivative of lithium aluminum hydride, lithium tris(diethylamino)aluminum hydride (LTDEA), shows quite general applicability in the conversion of carboxylic acids, carboxylic esters, and primary carboxamides to the corresponding aldehydes. Lithium tripiperidinoaluminum hydride (LTPDA) also appears to be a reagent of choice for such partial transformation of primary carboxamides. In additioin, both LTDEA and LTPDA reduce tertiary carboxyamides to aldehydes in high yields. Finally, lithium tris(dihexylamino)aluminum hydride (LTDHA) is capable of achieving the chemoselective reduction of aromatic nitriles to aldehydes in the presence of aliphatic nitriles under practical conditions.