• 제목/요약/키워드: chemokine

검색결과 364건 처리시간 0.027초

Extracellular Nucleotides Can Induce Chemokine (C-C motif) Ligand 2 Expression in Human Vascular Smooth Muscle Cells

  • Kim, Jeung-Il;Kim, Hye-Young;Kim, Sun-Mi;Lee, Sae-A;Son, Yong-Hae;Eo, Seong-Kug;Rhim, Byung-Yong;Kim, Koanhoi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권1호
    • /
    • pp.31-36
    • /
    • 2011
  • To understand the roles of purinergic receptors and cellular molecules below the receptors in the vascular inflammatory response, we determined if extracellular nucleotides up-regulated chemokine expression in vascular smooth muscle cells (VSMCs). Human aortic smooth muscle cells (AoSMCs) abundantly express $PSY_1$, $PSY_6$, and $PSY_{11}$ receptors, which all respond to extracellular nucleotides. Exposure of human AoSMCs to $NAD^+$, an agonist of the human $PSY_{11}$ receptor, and $NADP^+$ as well as ATP, an agonist for $PSY_1$ and $PSY_{11}$ receptors, caused increase in chemokine (C-C motif) ligand 2 gene (CCL2) transcript and CCL2 release; however, UPT did not affect CCL2 expression. CCL2 release by $NAD^+$ and $NADP^+$ was inhibited by a concentration dependent manner by suramin, an antagonist of P2-purinergic receptors. $NAD^+$ and $NADP^+$ activated protein kinase C and enhanced phosphorylation of mitogen-activated protein kinases and Akt. $NAD^+$- and $NADP^+$-mediated CCL2 release was significantly attenuated by SP6001250, U0126, LY294002, Akt inhibitor IV, RO318220, GF109203X, and diphenyleneiodium chloride. These results indicate that extracellular nucleotides can promote the proinflammatory VSMC phenotype by up-regulating CCL2 expression, and that multiple cellular elements, including phosphatidylinositol 3-kinase, Akt, protein kinase C, and mitogen-activated protein kinases, are involved in that process.

No Association between the CCR5Δ32 Polymorphism and Sporadic Esophageal Cancer in Punjab, North-West India

  • Sambyal, Vasudha;Manjari, Mridu;Sudan, Meena;Uppal, Manjit Singh;Singh, Neeti Rajan;Singh, Harpreet;Guleria, Kamlesh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권10호
    • /
    • pp.4291-4295
    • /
    • 2015
  • Background: Chemokines and their receptors influence carcinogenesis and cysteine-cysteine chemokine receptor 5 (CCR5) directs spread of cancer to other tissues. A 32 base pair deletion in the coding region of CCR5 that might alter the expression or function of the protein has been implicated in a variety of immune-mediated diseases. The action of antiviral drugs being proposed as adjuvant therapy in cancer is dependent on CCR5 wild type status. In the present study, distribution of CCR5${\Delta}32$ polymorphism was assessed in North Indian esophageal cancer patients to explore the potential of using chemokine receptors antagonists as adjuvant therapy. Materials and Methods: DNA samples of 175 sporadic esophageal cancer patients (69 males and 106 females) and 175 unrelated healthy control individuals (69 males and 106 females) were screened for the CCR5${\Delta}32$ polymorphism by direct polymerase chain reaction (PCR). Results: The frequencies of wild type homozygous (CCR5/CCR5), heterozygous (CCR5/${\Delta}32$) and homozygous mutant (${\Delta}32/{\Delta}32$) genotypes were 96.0 vs 97.72%, 4.0 vs 1.71% and 0 vs 0.57% in patients and controls respectively. There was no difference in the genotype and allele frequencies of CCR5${\Delta}32$ polymorphism in esophageal cancer patients and control group. Conclusions: The CCR5${\Delta}32$ polymorphism is not associated with esophageal cancer in North Indians. As the majority of patients express the wild type allele, there is potential of using antiviral drug therapy as adjuvant therapy.

Toll-like Receptor3-mediated Induction of Chemokines in Salivary Epithelial Cells

  • Li, Jingchao;Jeong, Mi-Young;Bae, Ji-Hyun;Shin, Yong-Hwan;Jin, Meihong;Hang, Sung-Min;Lee, Jeong-Chai;Lee, Sung-Joong;Park, Kyung-Pyo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권4호
    • /
    • pp.235-240
    • /
    • 2010
  • Toll-like receptors (TLRs) functionally expressed in salivary epithelial cells, but their roles remain elusive. Among TLRs family, TLR3 is activated by dsRNA, a byproduct of viral infection. The aim of this study was to investigate the role of TLR3 in the inflammatory immune responses using HSG cells. Reverse transcriptase-polymerase chain reaction (RT-PCR), real-time PCR and ELISA were performed to identify expression of TLRs and TLR3-mediated chemokine inductions. The chemotaxis assay of activated T lymphocytes was also performed. Treatment of HSG cells with polyinosinic: polycytidylic acid (poly(I:C)) significantly increased interferon-$\gamma$-inducible protein 10 (IP-10), interferoninducible T-cell $\alpha$ chemoattractant (I-TAC), and regulated on activation, normal T-cells expressed and secreted (RANTES) gene expressions in a concentration-dependent manner. Anti-TLR3 antibody blocked the increases of IP-10 and I-TAC genes. Poly(I:C)-induced increases of IP-10 and I-TAC were also confirmed at protein levels from cell lysates, but their release into extracellular medium was detected only in IP-10. We found that the culture media from HSG cells stimulated with poly(I:C) significantly increases T lymphocyte migration. Our results suggest that TLR3 plays an important role in chemokine induction, particularly IP-10, in salivary epithelial cells.

Investigation of Chemotactic Activities in Differentiated HL-60 Cells by a Time-lapse Videomicroscopic Assay

  • Jung, Yun-Jae;Woo, So-Youn;Ryu, Kyung-Ha;Jang, Myoung-Ho;Miyasaka, Masayuki;Seoh, Ju-Young
    • IMMUNE NETWORK
    • /
    • 제6권2호
    • /
    • pp.76-85
    • /
    • 2006
  • Background: Chemotaxis is one of the cardinal functions of leukocytes, which enables them to be recruited efficiently to the right place at the right time. Analyzing chemotactic activities is important not only for the study on leukocyte migration but also for many other applications including development of new drugs interfering with the chemotactic process. However, there are many technical limitations in the conventional in vitro chemotaxis assays. Here we applied a new optical assay to investigate chemotactic activities induced in differentiated HL-60 cells. Methods: HL-60 cells were stimulated with 0.8% dimethylformamide (DMF) for 4 days. The cells were analyzed for morphology, flow cytometry as well as chemotactic activities by a time-lapse videomicroscopic assay using a chemotactic microchamber bearing a fibronectin-coated cover slip and an etched silicon chip. Results: Videomicroscopic observation of the real cellular motions in a stable concentration gradient of chemokines demonstrated that HL-60 cells showed chemotaxis to inflammatory chemokines (CCL3, CCL5 and CXCL8) and also a homeostatic chemokine (CXCL12) after DFM-induced differentiation to granulocytic cells. The cells moved randomly at a speed of $6.99{\pm}1.24{\mu}m/min$ (n=100) in the absence of chemokine. Chemokine stimulation induced directional migration of differentiated HL-60 cells, while they still wandered very much and significantly increased the moving speeds. Conclusion: The locomotive patterns of DMF-stimulated HL-60 cells can be analyzed in detail throughout the course of chemotaxis by the use of a time-lapse videomicroscopic assay. DMF-stimulated HL-60 cells may provide a convenient in vitro model for chemotactic studies of neutrophils.

Metformin ameliorates bile duct ligation-induced acute hepatic injury via regulation of ER stress

  • Lee, Chi-Ho;Han, Jung-Hwa;Kim, Sujin;Lee, Heejung;Kim, Suji;Nam, Dae-Hwan;Cho, Du-Hyong;Woo, Chang-Hoon
    • BMB Reports
    • /
    • 제53권6호
    • /
    • pp.311-316
    • /
    • 2020
  • Cholestasis is a condition in which the bile duct becomes narrowed or clogged by a variety of factors and bile acid is not released smoothly. Bile acid-induced liver injury is facilitated by necrotic cell death, neutrophil infiltration, and inflammation. Metformin, the first-line treatment for type 2 diabetes, is known to reduce not only blood glucose but also inflammatory responses. In this study, we investigated the effects of metformin on liver injury caused by cholestasis with bile acid-induced hepatocyte injury. Static bile acid-induced liver injury is thought to be related to endoplasmic reticulum (ER) stress, inflammatory response, and chemokine expression. Metformin treatment reduced liver injury caused by bile acid, and it suppressed ER stress, inflammation, chemokine expression, and neutrophil infiltration. Similar results were obtained in mouse primary hepatocytes exposed to bile acid. Hepatocytes treated with tauroursodeoxycholic acid, an ER stress inhibitor, showed inhibition of ER stress, as well as reduced levels of inflammation and cell death. These results suggest that metformin may protect against liver injury by suppressing ER stress and inflammation and reducing chemokine expression.

TNF-$\alpha$ 자극에 의한 U937 단핵구 세포의 HT29 대장 상피 세포 부착에 대한 Berberine의 PPAR$\gamma$가 아닌 NF-$\kappa$B 경로를 통한 억제 효과 (Inhibitory Effect of Berberine on TNF-$\alpha$-induced U937 Monocytic Cell Adhesion to HT29 Human Colon Epithelial Cells is Mediated through NF-$\kappa$B Rather than PPAR$\gamma$)

  • 박수영;이광익;김일엽;김정애
    • 약학회지
    • /
    • 제54권2호
    • /
    • pp.91-96
    • /
    • 2010
  • Berberine, an isoquinoline alkaloid, has a wide range of pharmacological effects, including anti-inflammation. It has been reported that berberine inhibits experimental colitis through inhibition of IL-8, and that inhibitory effect of berberine on inflammatory cytokine expression is mediated through peroxisome proliferator activated receptor (PPAR)-$\gamma$. In this study, we examined the effects and action mechanism of berberine on the tumor necrosis factor (TNF)-$\alpha$-induced monocyte adhesion to HT29 human colonic epithelial cells, which is commonly used as an in vitro model of inflammatory bowel disease (IBD). Berberine significantly inhibited the TNF-$\alpha$-induced monocyte adhesion to HT29, which is similar to the effect of PDTC, a nuclear factor (NF)-$\kappa$B inhibitor. However, ciglitazone and GW, the ligands of PPAR-$\gamma$, did not suppress the TNF-$\alpha$-induced monocyte adhesion to HT29 cells. In addition, TNF-$\alpha$-induced chemokine expression and NF-$\kappa$B transcriptional activity were significantly inhibited by berberine in a concentration-dependent manner. The results suggest that inhibitory effect of berberine on colitis is mediated through suppression of NF-$\kappa$B and NF-$\kappa$B-dependent chemokine expression.

Chemokine Lkn-1/CCL15 enhances matrix metalloproteinase-9 release from human macrophages and macrophage-derived foam cells

  • Kwon, Sang-Hee;Ju, Seong-A;Kang, Ji-Hye;Kim, Chu-Sook;Yoo, Hyeon-Mi;Yu, Ri-Na
    • Nutrition Research and Practice
    • /
    • 제2권2호
    • /
    • pp.134-137
    • /
    • 2008
  • Atherosclerosis is characterized by a chronic inflammatory disease, and chemokines play an important role in both initiation and progression of atherosclerosis development. Leukotactin-1 (Lkn-1/CCLl5), a new member of the human CC chemokine family, is a potent chemoattractant for leukocytes. Our previous study has demonstrated that Lkn-1/CCL15 plays a role in the initiation of atherosclerosis, however, little is currently known whether Lkn-1/CCL15 is associated with the progression of atherosclerosis. Matrix metalloproteinases (MMPs) in human coronary atherosclerotic lesions playa crucial role in the progression of atherosclerosis by altering the vulnerability of plaque rupture. In the present study, we examined whether Lkn-1/CCLl5 modulates MMP-9 release, which is a prevalent form expressed by activated macrophages and foam cells. Human THP-1 monocytic cells and/or human peripheral blood monocytes (PBMC) were treated with phorbol myristate acetate to induce their differentiation into macrophages. Foam cells were prepared by the treatment of THP-1 macrophages with human oxidized LDL. The macrophages and foam cells were treated with Lkn-1/CCL15, and the levels of MMP-9 release were measured by Gelatin Zymography. Lkn-1/CCL15 significantly enhanced the levels of MMP-9 protein secretion from THP-1 monocytic cells-derived macrophages, human PBMC-derived macrophages, as well as macrophage-derived foam cell in a dose dependent manner. Our data suggest that the action of Lkn-1/CCL15 on macrophages and foam cells to release MMP-9 may contribute to plaque destabilization in the progression of atherosclerosis.

High Cytoplasmic CXCR4 Expression Predicts Prolonged Survival in Triple-Negative Breast Cancer Patients Treated with Adjuvant Chemotherapy

  • Shim, Bobae;Jin, Min-Sun;Moon, Ji Hye;Park, In Ae;Ryu, Han Suk
    • 대한병리학회지
    • /
    • 제52권6호
    • /
    • pp.369-377
    • /
    • 2018
  • Background: Chemokine receptor CXC chemokine receptor type 4 (CXCR4) and its ligand CXC motif chemokine 12 (CXCL12; stromal cell-derived factor-1) are implicated in tumor growth, metastasis, and tumor cell-microenvironment interaction. A number of studies have reported that increased CXCR4 expression is associated with worse prognosis in triple-negative breast cancer (TNBC), but its prognostic significance has not been studied in TNBC patients treated with adjuvant chemotherapy. Methods: Two hundred eighty-three TNBC patients who received adjuvant chemotherapy were retrospectively analyzed. Tissue microarray was constructed from formalin-fixed, paraffin-embedded tumor tissue and immunohistochemistry for CXCR4 and CXCL12 was performed. Expression of each marker was compared with clinicopathologic characteristics and outcome. Results: High cytoplasmic CXCR4 expression was associated with younger age (p=.008), higher histologic grade (p=.007) and lower pathologic stage (p=.045), while high CXCL12 expression was related to larger tumor size (p=.045), positive lymph node metastasis (p=.005), and higher pathologic stage (p=.017). The patients with high cytoplasmic CXCR4 experienced lower distant recurrence (p=.006) and better recurrence-free survival (RFS) (log-rank p=.020) after adjuvant chemotherapy. Cytoplasmic CXCR4 expression remained an independent factor of distant recurrence (p=.019) and RFS (p=.038) after multivariate analysis. Conclusions: High cytoplasmic CXCR4 expression was associated with lower distant recurrence and better RFS in TNBC patients treated with adjuvant chemotherapy. This is the first study to correlate high CXCR4 expression to better TNBC prognosis, and the underlying mechanism needs to be elucidated in further studies.

Cinnamomum camphora Leaves Alleviate Allergic Skin Inflammatory Responses In Vitro and In Vivo

  • Kang, Na-Jin;Han, Sang-Chul;Yoon, Seok-Hyun;Sim, Jae-Yeop;Maeng, Young Hee;Kang, Hee-Kyoung;Yoo, Eun-Sook
    • Toxicological Research
    • /
    • 제35권3호
    • /
    • pp.279-285
    • /
    • 2019
  • In this study, we investigated the therapeutic potential of Cinnamomum camphora leaves on allergic skin inflammation such as atopic dermatitis. We evaluated the effects of C. camphora leaves on human adult low-calcium high-temperature keratinocytes and atopic dermatitis mice. C. camphora leaves inhibited Macrophage-derived chemokine (an inflammatory chemokine) production in $interferon-{\gamma}$ (10 ng/mL) stimulated Human adult low-calcium high-temperature keratinocytes in a dose dependent manner. C. camphora leaves suppressed the phosphorylation of janus kinase signal transducer and activator of transcription 1. C. camphora leaves also suppressed the phosphorylation of extracellular signal-regulated kinase 1/2, a central signaling molecule in the inflammation process. These results suggest that C. camphora leaves exhibits anti-inflammatory effect via the phosphorylation of signal transducer and activator of transcription 1 and extracellular signal-regulated kinase 1/2. To study the advanced effects of C. camphora leaves on atopic dermatitis, we induced experimental atopic dermatitis in mice by applying 2,4-dinitrochlorobenzene. The group treated with C. camphora leaves (100 mg/kg) showed remarkable improvement of atopic dermatitis symptoms: reduced serum immunoglobulin E levels, smaller lymph nodes with reduced thickness and length, decreased ear edema, and reduced levels of inflammatory cell infiltration in the ears. Interestingly, the effects of C. camphora leaves on atopic dermatitis symptoms were stronger than those of hydrocort cream, a positive control. Taken together, C. camphora leaves showed alleviating effects on the inflammatory chemokine production in vitro and atopic dermatitis symptoms in vivo. These results suggest that C. camphora leaves help in the treatment of allergic inflammation such as atopic dermatitis.

The role of botulinum toxin type A related axon transport in neuropathic pain induced by chronic constriction injury

  • Bu, Huilian;Jiao, Pengfei;Fan, Xiaochong;Gao, Yan;Zhang, Lirong;Guo, Haiming
    • The Korean Journal of Pain
    • /
    • 제35권4호
    • /
    • pp.391-402
    • /
    • 2022
  • Background: The mechanism of peripheral axon transport in neuropathic pain is still unclear. Chemokine ligand 13 (CXCL13) and its receptor (C-X-C chemokine receptor type 5, CXCR5) as well as GABA transporter 1 (GAT-1) play an important role in the development of pain. The aim of this study was to explore the axonal transport of CXCL13/CXCR5 and GAT-1 with the aid of the analgesic effect of botulinum toxin type A (BTX-A) in rats. Methods: Chronic constriction injury (CCI) rat models were established. BTX-A was administered to rats through subcutaneous injection in the hind paw. The pain behaviors in CCI rats were measured by paw withdrawal threshold and paw withdrawal latencies. The levels of CXCL13/CXCR5 and GAT-1 were measured by western blots. Results: The subcutaneous injection of BTX-A relieved the mechanical allodynia and heat hyperalgesia induced by CCI surgery and reversed the overexpression of CXCL13/CXCR5 and GAT-1 in the spinal cord, dorsal root ganglia (DRG), sciatic nerve, and plantar skin in CCI rats. After 10 mmol/L colchicine blocked the axon transport of sciatic nerve, the inhibitory effect of BTX-A disappeared, and the levels of CXCL13/CXCR5 and GAT-1 in the spinal cord and DRG were reduced in CCI rats. Conclusions: BTX-A regulated the levels of CXCL13/CXCR5 and GAT-1 in the spine and DRG through axonal transport. Chemokines (such as CXCL13) may be transported from the injury site to the spine or DRG through axonal transport. Axon molecular transport may be a target to enhance pain management in neuropathic pain.