• 제목/요약/키워드: chemical states

검색결과 850건 처리시간 0.023초

Determination of Chemical Compositions and Oxidation States for Corrosion Products in LiCl Molten Salts

  • Park, Yong-Joon;Pyo, Hyung-Ryul;Kim, Do-Yang;Jee, Kwang-Yong;Kim, Won-Ho
    • Nuclear Engineering and Technology
    • /
    • 제32권5호
    • /
    • pp.514-520
    • /
    • 2000
  • The mechanism of corrosion behavior has to be understood clearly to select an optimum material for handling molten salts to be used in the oxide reduction process of PWR spent fuel. In this study, the oxidation states of corrosion products on the surface of Inconel 600 and 800H as well as their chemical compositions and structural informations were determined by using XPS, ICP-AES, AAS, EPMA and XRD after the corrosion experiment with lithium molten salts at 75$0^{\circ}C$ for 25 hours. Nickel and oxygen were detected from the corrosion products on the surface of Inconel plates and chromium was found to be dissolved out into lithium molten salts leaving cracks on the surface. The corrosion products were identified as metal oxides such as Fe$_2$O$_3$, Cr$_2$O$_3$, NiO, NiFe$_2$O$_4$and MnO by using XPS and XRD.

  • PDF

Effects of Ionizable Groups on the Redox Potentials of Cytochrome c₃from D. vulgaris Miyazaki F

  • 박장수;강신원
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권9호
    • /
    • pp.820-826
    • /
    • 1996
  • The p2H dependence of the NMR chemical shifts of the proton signals of heme methyl groups and ionizable groups in the vicinity of the heme were investigated. The p2H titration of heme methyl signals in four macroscopic oxidation states by saturation tranfer method was performed in the range between p2H 5.2 and 9.0. While the p2H dependence of the heme methyl resonance in fully oxidized state was small, most resonances in the intermediate oxidation states showed certain shifts. Particularly, methyl resonances of heme 1 (sequential heme numbering) exhibited sharp p2H dependence in acidic range. β-CH2 of the propionate of hemes 1 and 4 were titrated in the range of p2H 4.5-9.0. Only the 6-propionate group of heme 1 was protonated in this p2H range and its titration curve was similar to those of methyl resonances of heme 1 in intermediate oxidation states. Analysis of the microscopic redox potentials showed that they change depending on p2H. The ionizable groups responsible for the p2H dependence of these potentials are 6-propionate of heme 1 in acidic range and His 67 in basic range.

Ab Initio Study on the Thermal Decomposition of CH3CF2O Radical

  • Singh, Hari Ji;Mishra, Bhupesh Kumar;Gour, Nand Kishor
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권12호
    • /
    • pp.2973-2978
    • /
    • 2009
  • The decomposition reaction mechanism of $CH_3CF_2O$ radical formed from hydroflurocarbon, $CH_3CHF_2$ (HFC-152a) in the atmosphere has been investigated using ab-initio quantum mechanical methods. The geometries of the reactant, products and transition states involved in the decomposition pathways have been optimized and characterized at DFT-B3LYP and MP2 levels of theories using 6-311++G(d,p) basis set. Calculations have been carried out to observe the effect of basis sets on the optimized geometries of species involved. Single point energy calculations have been performed at QCISD(T) and CCSD(T) level of theories. Out of the two prominent decomposition channels considered viz., C-C bond scission and F-elimination, C-C bond scission is found to be the dominant path involving a barrier height of 12.3 kcal/mol whereas the F-elimination path involves that of a 28.0 kcal/mol. Using transition-state theory, rate constant for the most dominant decomposition pathway viz., C-C bond scission is calculated at 298 K and found to be 1.3 ${\times}$ 10$^4s{-1}$. Transition states are searched on the potential energy surfaces involving both decomposition channels and each of the transition states are characterized. The existence of transition states on the corresponding potential energy surface are ascertained by performing Intrinsic Reaction Coordinate (IRC) calculation.

Conformation of L-Ascorbic Acid in solution. 1. Neutral L-Ascorbic Acid

  • Shin, Young A.;Kang, Young-Kee
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권1호
    • /
    • pp.61-67
    • /
    • 1991
  • Conformational free energy calculations using an empirical potential function and the hydration shell model (a program CONBIO) were carried out on the neutral L-ascorbic acid (AA) in the unhydrated and hydrated states. The conformational energy was minimized from starting conformations which included possible conformations of six torsion angles in the molecule. The conformational entropy of each low energy conformation in both states was computed using a harmonic approximation. From the analysis of conformational free energies for AA in both states, intramolecular hydrogen bonds (HBs) are proved to be an essential factor in stabilizing the overall conformations, and cause the conformations in both states to be quite different from those in crystal. In the case of hydrated AA, there is a competition between HBs and hydration, and the hydration around the two hydroxyl groups attached to the acyclic side chain forces the molecule to form less stable HBs. The hydration affects strongly the conformational energy surfaces of AA. Several feasible conformations obtained in this work indicate that there exists an ensemble of several conformations in aqueous solution. The calculated probable conformations for the rotation about the C5-C6 bond of the acyclic side chain are trans and gauche +, which are in good agreement with results of NMR experiment.

Conformation of L-Ascorbic Acid in Solution 2. L-Ascorbic Acid Anion

  • Mi Suk Kim;Sung Hee Lee;Uoo Tae Chung;Young Kee Kang
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권2호
    • /
    • pp.143-148
    • /
    • 1991
  • In the unhydrated and hydrated states, conformational free energies of L-ascorbic acid anion (AAA) were computed with an empirical potential function and the hydration shell model (a program CONBIO). The conformational energy was minimized from possible starting conformations expressed with five torsion angles of the molecule. The conformational entropy of each low energy conformation in both states was computed using a harmonic approximation. As found in L-ascorbic acid (AA), intramolecular hydrogen bonds (HBs) are proved to be of significant importance in stabilizing the overall conformations of AAA in both states, and give the folded conformations, which are quite different from those in crystal. There are competitions between HBs and hydration around O3 atom of the lactone ring and hydroxyls of the acyclic side chain. Especially, the whole conformation of AAA is strongly dependent on the water-accessibility of O3 atom. Though there is a significant effect of the hydration on conformational surface, the lowest energy conformation of the unhydrated AAA is conserved. The different patterns of HBs and hydration result in the conformations of AAA in both states being different from those of AA. It can be drawn by several feasible conformations obtained in the hydrated state that there exists an ensemble of several conformations in aqueous solution.

A Relativistiv Configuration Interaction Method Using Effective Core Potentials with Spin-Orbit Interactions

  • 김명청;이상연;이윤섭
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권6호
    • /
    • pp.547-552
    • /
    • 1995
  • As an extension to the Kramers' restricted Hartree-Fock (KRHF) method [J. Comp. Chem., 13, 595 (1992)], we have implemented the Kramers' restricted configuration interaction (KRCI) program in order to calculate excited states as well as the ground state of polyatomic molecules containing heavy atoms. This KRCI is based on determinants composed of the two-component molecular spinors which are generated from KRHF calculations. The Hamiltonian employed in the KRHF and KRCI methods contains most of all the important relativistic effects including spin-orbit terms through the use of relativistic effective core potentials (REP). The present program which is limited to a small configuration space has been tested for a few atoms and molecules. Excitation energies of the group 14 and 16 elements calculated using the present KRCI program are in good accordance with the spectroscopic data. Calculated excitation energies for many Rydberg states of K and Cs indicate that spin-orbit terms in the REP, which are derived for the ground state, are also reliable for the description of highly excited states. The electronic states of the polyatomic molecule CH3I are probed from the molecular region to the dissociation limit. Test calculations demonstrate that the present KRCI is a useful method for the description of potential energy surface of polyatomic molecules containing heavy atoms.

Conformational Analysis of Catecholamines-Raman, High Resolution NMR, and Conformational Energy Calculation Study

  • Park Mi-Kyung;Yoo Hee-Soo;Kang Young Kee;Lee Nam-Soo;Ichiro Hanazaki
    • Bulletin of the Korean Chemical Society
    • /
    • 제13권3호
    • /
    • pp.230-235
    • /
    • 1992
  • The conformational analysis has been done for catecholamines (dopamine, norepinephrine, and epinephrine) in the cationic and di-anionic states. The species responsible for adsorption on silver metal surface is anionic deprotonated at hydroxyl groups of catechol moiety, i.e., di-anionic states of catecholamines. This was deduced from Fourier-transform Raman spectra of sodium salts of catecholamines. High resolution proton NMR (400 MHz) spectra of catecholamines in basic and neutral $D_2O$ solution show that the conformations of norepinephrine and epinephrine in the di-anionic states are preferred in gauche, but not for dopamine in the di-anionic state. However the energy difference between trans and gauche of catecholamines in the protonated cationic states is small enough to rotate freely through C-C bond in ethylamine moiety. The conformational calculations using an empirical potential function and the hydration shell model (a program CONBIO) show consistent with above experimental results. The calculations suggest that the species of catecholamines adsorbed on silver metal surface would be in favor of the gauche conformations.

Doping된 Si 반도체 세계에서 pH 효과 (pH Effects at Doped Si Semiconductor Interfaces)

  • 천장호;라극환
    • 대한전자공학회논문지
    • /
    • 제27권12호
    • /
    • pp.1859-1864
    • /
    • 1990
  • The effect of H+ and OH- ion concentrations at doped Si semiconductor/pH buffer solution interfaces were investigated in terms of cyclic current-voltage characteristics. The effects of space charge on oppositely doped Si semiconductors, i.e., p-and n-Si semiconductors, can be effectively applied to study the pH effects and the slow surface states at the interfaces. The adsorptions of H+ and OH- inons on the doped Si semiconductor surfaces are physical adsorption rather than chemical adsorption. Adsorptive processes and charging effects of the slow surface states can be explained as the potential barrier variations and the related current-voltage characteristics at the interfaces. Under forward bias, the charged slow surface states on the p-and n-si semiconductor surface are donor and acceptor slow surface states, respectively. The effects of minority carriers on the slow surface states can be neglected at the doped Si semiconductor interfaces.

  • PDF

화생방 테러에 대한 대응체계 구축방안 (Countermeasure system and Construction Method against CBR Terrorism)

  • 박옥철;김태환
    • 한국재난정보학회 논문집
    • /
    • 제6권2호
    • /
    • pp.21-44
    • /
    • 2010
  • Today, in response to chemical, biological and radiological terrorism has been active for the study. However, if chemical, biological and radiological attack has occurred to respond to the agency has not conducted the research. The purpose of this study are as follows. First, South Korea and the United States 'CBR terrorism' comparative analysis of the response system. Second, South Korea 'CBR terrorism' measures to improve the system response is presented. To achieve the purpose of this study, the following research is carried out. First, determine the status of the case of CBR incident. Second, the United States 'CBR terrorism' response systems and organizational approaches. Third, Korea's 'CBR terrorism' response system and the problem is derived.