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As an extension to the Kramers* restricted Hartree-Fock (KRHF) method [J. Comp. Chem., 13, 595 (1992)1 we have 
implemented the Kramers* restricted configuration interaction (KRCI) program in order to calculate excited states 
as well as the ground state of polyatomic molecules containing heavy atoms. This KRCI is based on determinants 
composed of the two-component molecular spinors which are generated from KRHF calculations. The Hamiltonian 
employed in the KRHF and KRCI methods contains most of all the important relativistic effects including spin-orbit 
terms through the use of relativistic effective core potentials (REP). The present program which is limited to a small 
configuration space has been tested for a few atoms and molecules. Excitation energies of the group 14 and 16 
elements calculated using the present KRCI program are in good accordance with the spectroscopic data. Calculated 
excitation energies for many Rydberg states of K and Cs indicate that spin-orbit terms in the REP, which are derived 
for the ground state, are also reliable for the description of-highly excited states. The electronic states of the polyatomic 
molecule CH3I are probed from the molecular region to the dissociation limit. Test calculations demonstrate that 
the present KRCI is a useful method for the description of potential energy surface of polyatomic molecules containing 
heavy atoms.

Introduction

In order to achieve a good accuracy in the description 
of potential energy surfaces for molecules containing heavy 
atoms, it is necessary to include spin-orbit interactions and 
other r미ativistic effects in the electronic structure calcula­
tions.1~3 Although electronic structure of molecules can be 
treated relativistically using ab initio all■이ectron method 
starting from the Dirac-Fock (DF) formalism,4~8 this approach 
has limited utility at present because of the large number 
of electrons and resulting additional integrals. Furthermore 
electron correlations are often essential and usually more 
important than the relativistic corrections. For the configura­
tion interaction (CI) method commonly employed to account 
for the electron correlations, the above two factors make 
the all■미ectron relativistic calculations still more impractical.9

The complexity of carrying out all-electron relativistic cal­
culations can be substantially reduced by adopting an ab 
initio approximate scheme known as the effective core poten­
tial methods without compromising too much accuracy. There 
are many variations of relativistic effective core potentials 
(REPs) with different generating procedures and final forms. 
We have been developing Hartree-Fock (HF) and post-HF 
methods based upon one particular form of the REP which 
contains spin-orbit interactions as a part of the r어ativistic 
correction. This REP was origin가ly formulated by Lee et 
a/.10 and improved by Christiansen et al.^1 generated and 
tabulated in forms convenient for molecular calculations for 
many elements by Ermler, Christiansen and their cowork­
ers.12'15 By defining the molecular Hamiltonian with the 
above REP, it is possible to include spin-orbit interactions 
from the HF level of the theory, but this requires modifica­
tion in the computational method. We have taken this ap­
proach of including spin-orbit terms from the HF level and 
developed the Kramers' restricted Hartree-Fock (KRHF)16 

and the MP2 method (KRMP2)17 for polyatomic molecules.
Here we report the extension to a CI method, which we 

will refer as the Kramers' restricted CI (KRCD method in 
order to emphasize the symmetry property of the Hamilto­
nian used. This KRCI can be used to study excited states 
in addition to the ground state and has the ability to investi­
gate open shell states of polyatomic molecules. The present 
KRCI method is tested for atoms and small molecules with 
small basis sets and configuration spaces. Theory behind the 
present scheme is described in the next section followed 
by results of some test calculations.

Thoery

For a polyatomic molecule with nv valence electrons, the 
two-component molecular Hamiltonian18 can be expressed (in 
atomic units) as

H=愛—靛+言(一务"严)]

锐rt} 伉 rab

where i and j denote valence electrons, a and b are the 
core indices, 7籍 is the charge of the core at and is 
the REP of atom a. There can be many variations in the 
form of REPs, and the present REP is expressed by the 
following form,1218

+ [ %严&) - 如件W) 기加〉＜ljm\ (2)

where represents a two-component projection
operator. Molecular spinors which are one-electron eigen­
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functions of the REP of Eq. (2) have only two components 
while the Dirac spinors have four components. The VREP of 
Eq. (2) can be expressed as the sum of the weighted average 
of REP (AREP), 伊皿, and the effective 야此-electron spin­
orbit (ESO) operator, Vs0, as

URep=Uhep+U%. (3)

In the above equation, the AREP has the form of

UASEP=UIASEP(r)+^ t "俨")—U严”)]|加><”씨 ⑷ 
Z = 0 m = —i

where

严&)=⑵+ 1)T[/.U岩 2(”+(，+l)•啰I*)〕 ⑸

and the ESO can be written as

U&)=s・ % &은〒門’) 土 ： IZw><Zwll|/w,XZw,|
Z=1 시十 丄 m=T rn^-l

(6)

where

AU阡(r)= l聲嵌)-哮两). ⑺

When the ESO is omitted in Eq. (3), 나】。REP reduces to 
the AREP that is equivalent in form to many effective core 
potentials in the conventional nonrelativistic method. The 
use of the AREP in the conventional molecular orbital calcu­
lations will probably produce most relativistic effects except 
for the spin-orbit interactions. The spin-orbit interactions can 
be investigated by performing additional calculations with 
and without the ESO at various levels.19 In the present work, 
however, the spin-orbit coupling is included from the HF 
step to form the two-component spinors.

Even when the REP is explicitly considered, the total wa­
vefunction of the ground state of a closed-shell system can 
be approximated by one Slater determinant in the HF me­
thod as

W=人IW1W2 …(8)

where A is the antisymmetrization and normalization opera­
tor and the w's are one-electron molecular spinors with two 
components. In this spinor formalism, the total energy of 
the molec니e is

皿 1 化 으, 7e^E=<W|HlW>=2",+蘇(/厂 刍户 (9)

where

A= 昉 처 WW> (10)

Kq= <v，|A)|\|/i> = 沖』旦Tw>. (ID
r12

All one-electron molecular spinors can be expressed as 
the linear combinations of the products of orbitals 心's and 
spin functions a and 0,

W广 = 2 疽汹以成너- Z 疽沸为。 (12)
p p

M — Z"加X#a+ (13)
p p 
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where superscripts + and — refer to Kramers* pair. With 
a special choice of phase factors,

= (14)

(15)

where time reversal operator T is given by20 T~ —ioyT()t 
C5y is the Pauli matrix acting on the spin part of the spinor, 
and To is the complex conjugation operator for the orbital 
part.

In the KRHF method,16 Kramers' symmetry is introduced 
since the two-component Hamiltonian of Eq. (1) is invariant 
under the operation of the time reversal symmetry. The total 
wave function can be written in terms of Kramers' restricted 
spinor pairs as

¥=2|皿(7*1)阳(7%)…W财/20W由2)l (16)

and the total electronic energy is
1비으 Hp/2

E=2 £ 加 + X QJi厂 Kij—L》 (17)
» M

where

시 V> = (18)
‘12

&= (19)
r，2

Li}- L디 M> = 丄늬 沖>• (20)

By supposing linear expansions in Eq. (12) and (13) as solu­
tions satisfying variational conditions, we obtain the Fock 
equation of the KRHF as

FC=SCE (21)

fty/2

F=h+ X (驻一K一乙) (22)
I

where

Ji = V> (23)

Li=\T\^t> TyJ. (25)
s

The appearance of the L is the main difference from the 
conventional Fock matrix. When Eq. (21) is solved, we have 
an orthonormal set of molecular spinors which are the linear 
combinations of the products of orbital bases and spin func­
tions as in Eq. (12) and (13). Since each coefficient of \”s 
is a complex number in the KRHF method, each molecular 
spinor is also a complex function.

After molecular spinors are formed in the HF step, the 
transformation from the basis integrals to the molecular spi­
nor integrals is performed using the transformation routine 
developed for the KRMP2 method17. The present KRCI is 
similar to the nonrelativistic CI in the formalism but the 
actual program could not be the same. Since this KRCI uses 
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the complex-valued integrals over molecular spinors of the 
KRHF, KRCI calculations require much more time and me­
mory than the corresponding conventional CI calculations 
using the same REPs. The computational requirement is 
somewhat reduced by the utilization of the Kramers, symme­
try while the treatment of complex numbers cannot be avoi­
ded in general.

If the HF wave function |%> is a reasonable approxima­
tion to the exact wave function, a CI wave function |a”> 
is usually expressed as

i<Po>=Cs%>+Z：GiK> + 2 csi、帽〉
a,r a<bi r<s

J. V 厂顽、V 广•，时“|5이“、_|_......十 乙 1七시 ：十 4乙 1勺疝1、七福7 十
a<b<Cf r<s<l a<b<c<dfr<s<t<u

(26)

where l%>, I나匕>, IW思〉,… denote determinants. In our 
KRCI, all the determinants are orthogonal to each other be­
cause the spinors composing them constitute an orthonormal 
set. If the normalization is imposed, the linear variation me­
thod leads to an eigenvalue equation,

HC=CE (27)

where the element of the Hamiltonian matrix, H,

H广明〉. (28)

The expression of each matrix element 7為 is derived from 
the Slater-Condon rules. Integrals over molecular spinors 
can be grouped as one- and two-electron integrals.

(29)

[_ij\kl] = JdW粉|"%)屮律1况他％伽心”)• (30)

For the orbital integrals which are used to form nonrelativis- 
tic Ci matrix, one can take advantage of the following sym­
metries,

Vi\h\j~\ = [j\h\i] (31)

Uj\ klA =。派"=[切如=[ji\ 如

-[kl\ijl -[.kl\ji~\ = [lk\ 万]= [lk\ ji~\ (32)

because all integrals are real numbers. In the pre옹ent me­
thod, it is necessary to consider complex conjugation when­
ever permutation is used to reduce the number of integrals 
to be explicitly evaluated, i.e. Eq. (31) changes to

h\i~\* and the symmetries in Eq. (32) are partially broken 
because the spinors are complex vectors. For the molecular 
spinor integrals, only the Hermitian symmetry exists,

Lij\kQ =[如旧]=顷1如*=[伙同* (33)

Wkll = WjQ = 的 如*=[廁刃 * (34)

In the present KRCI method, the Kramers' symmetry com­
pensates for the lowered symmetry with the following rela­
tionships20,

詩切] = 3 꺄 77]* (35)

\_iTj\kl^ ~[Tij\TkTl^ (36)

Table 1. Excitation Energies of Some Group 14 Elements in 
cnL

Term.

Ge Sn Pb

Exp. KRCI Exp. KRCI Exp. KRCI

3P /=0 0.0 0.0 0.0 0.0 0.0 0.0
J=X 557.1 552.3 1691.8 1742.1 7819.4 7467.6
7=2 1409.9 1409.4 3427.7 3654.4 10650.5 11240.9
J=2 7125.3 9827.5 8613.0 11228.2 21457.9 22163.2

S /=0 16367.2 17442.2 17162.6 18409.1 29466.8 30657.3

where T(Tj) — ~j.

To solve Eq. (27) is to diagonalize the matrix H. We have 
coded a simple CI routine that constructs the H matrix by 
comparing determinants. The diagonalization of the complex 
Hermitian matrix is performed by using the EVCHF routine 
from the IMSL library21 to get the eigenvectors and the cor­
responding eigenvalues.

Test Calculations and Results

Seven different computational methods, four based upon 
the use of AREP and three of REP, are used in this study. 
The relativistic restricted HF using the AREP (AREP-HF) 
is the HF method including all the relativistic effects except 
the spin-orbit coupling. Solutions obtained from the AREP- 
HF are called molecular orbitals in this work because of 
the lack of spin-orbit coupling. The relativistic M히ler・Plesset 
second order perturbation 나sing the solutions of the AREP- 
HF (AREP-MP2) calculates the perturbation energy with mo­
lecular orbital integrals. The relativistic CI using the solu­
tions of the AREP-HF (AREP-CI) is a CI approach using 
the same m이ecular orbital integrals as the AREP-MP2 while 
the addition of spin-orbit integrals in forming the CI matrix 
will lead to the spin-orbit CI method, which will be referred 
as AREP-SOCI. There are three REP methods, REP-KRHF, 
REP-KRMP2, and REP-KRCI. They are based on two-compo­
nent molecular Hamiltonian and take advantage of Kramers' 
symmetry. REP-KRHF produces two-component molecular 
spinors and REP-KRMP2 calculates the second order pertur­
bation energy using the molecular spinor integrals. REP- 
KRCI calculates CI energies using integrals over molecular 
spinors.

Full CI calculations with the REPs and minimal basis 
sets13~15 were performed for group 14 elements Ge, Sn, and 
Pb and group 16 elements Se, Te, and Po. Since the full 
CI calculation was performed for each element, AREP-SOCI 
and REP-KRCI gave the identical excitation energies. This 
provides one crucial check for the correctness of our imple­
mentation of the KRCI computer code. Tables 1 and 2 show 
that excitation energies from these crude calculations are 
accurate to 75-95% in comparison with the experimental spe­
ctroscopic data.22 Large A£(3Pi-3P0) and of Pb
which are expected for the heaviest element of the group 
14 demonstrate the need to include spin-orbit interactions 
even for the qualitatively correct results. Large AF(3Pr3P2), 
negative AE(3Pq-3Pi), and large AE(1S0-1D2)of Po are also
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Table 2. Excitation Energies of Some Group 16 Elements in 
cm-1

Term.

Ge lie Po

Exp. KRCI Exp. KRCI Exp. KRCI

3P J 2 0.0 0.0 0.0 0.0 0.0 0.0
J 1 1989.5 2125.2 4751. 4874.1 16831. 16942.3
J 0 2534.4 2723.2 4407. 4923.6 7514. 8383.8

w 2 9576.1 12379.4 10559. 13336.9 21679. 24074.2
xs J 0 22446.0 22612.7 23199. 23585.3 42718. 44924.5

reproduced by the present KRCI scheme. Nonrelativistic ab 
initio calculations do not produce splittings of 3P unless the 
spin-orbit interactions are added. It is impossible for the 
nonrelativistic CI to calculate the above AEJs.

Rydberg states of K and Cs atoms were calculated using 
the REPs1315 and moderate basis sets including some Ryd­
berg exponents (total of llsllp basis functions and no cont­
ractions) at the CI level of single electron excitation. Deter­
minants were constructed by using the molecular spinors 

from the REP-KRHF calculations of the positive ion. Excita-. 
tion energies of K are listed in Table 3 and those of Cs 
are in Table 4. The excitation energies of REP-KRCI and 
AREP-KRCI are about the same and systematically smaller 
than the experimental values22 indicating that low-lying sta­
tes are not described very well by the present scheme. Spin­
orbit splittings are calculated better by the REP-KRCI than 
by the AREP-SOCI method implying that the REP-KRCI may 
be superior to the AREP-SOCI method for this type of pro­
perties. Improvements of excitation energies and spin-orbit 
splittings are expected for more elaborate CI schemes. Rela­
tive errors in 옹pin・orbit splittings are rather uniform regard­
less of n quantum numbers except for the very last states. 
This is a good indication that the ESO contained in the REP 
is good not only for the ground states, for which ESO was 
derived, but also for highly excited states.

Figure 1 shows the six different dissociation curves for 
the ground state of the HBr which are calculated using the 
REP12 and the double zeta basis sets for Br and H. Due 
to the limitations in the HF theory, AREP-HF, AREP-MP2, 
REP-KRHF, and REP-KRMP2 can not dissociate the HBr 
into H and Br atoms. Two CI calculations, AREP-SOCI and

a Difference between experimental and calculated AE.

Table 3. Excitation Energies (in cm'1) for Rydberg States 吧您 and 2P3/2 of the K atom

Config. Term Exp. REP-KRCI Errora AREP-SOCI Error*1

3护 4俨 2P1/2 12985.17 11347.8 11353.5
2Pa/2 13042.89 11394.6 11391.5

A£(2P3/2-2P1/2) 57.72 46.8 -18.9% 38.0 -34.2%
3伊妙 2Pl/2 24701.44 22349.9 22351.7

2P3/2 24720.20 22365.9 22364.8
18.76 16.0 -14.7% 13.1 -30.2%

3护切】2R/2 28999.29 26498.2 26498.9
2P3/2 29007.70 26505.2 26504.6

AE(2P3/2-2PV2) 8.41 7.0 -16.7% 5.7 — 32.2%
3广* 2Pl/2 31069.98 28572.5 28572.7

2Ps/2 31074.46 28575.4 28575.1
AE(2Pg —2P1/2) 4.48 2.9 -35.3% 2.4 — 46.4%

Difference between experimental and calculated AE.

Table 4. Excitation Energies (in cm'1) for Rydberg States 2Pi/2 and 2P3/2 of the Cs atom

Config. Term Exp. REP-KRCI Error" AREP-SOCI Error"

渺&剑 2Pv2 11178.24 9131.3 9147.2
자%/2 11732.35 9526.4 9487.4

A£(2P3/2-2Pi/2) 554.11 395.1 —28.7% 340.2 一 38.6%
5力 6"】2P1/2 21765.65 18703.9 18699.0

2?3/2 21946.66 18845.6 18821.8
星也犯-中曲 181.01 141.7 -21.7% 122.8 — 32.2%
3俨&卩 2Pl/2 25709.14 22420.4 22409.5

务2 25791.78 22485.8 22466.2
AE(2P”2-2环2) 82.64 65.4 — 20.9% 56.7 -31.4%
渺6 渺 1 2P1/2 " 27637.29 24287.0 24273.4

2P3/2 27681.96 24317.9 24300.2
AE(2P3/2-2Pu2) 44.67 30.9 -30.8% 26.8 -40.0%
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Figure 1. Potential energy curves for the ground state of BrH.

Figure 3. Potential energy curves for low-lying states of CH3I 
computed usin용 난le REP-KRCI.

r(C-I)(bohr)

Hgure 2. Potential energy curves for the ground state of CH3I.

REP-KRCI, however, exhibit qualitative dissociations. The 
dissociation energy 2.99 eV of both AREP-SOCI and 
REP-KRCI is a reasonable value when compared with the 
experimental one of 3.92 eV.23 At the molecular region near 
Re, there are almost no difference between AREP and REP 
calculations^ but more difference is found with the increase 
of internuclear distance reflecting the fact that the spin-orbit 
interactions are usually larger for the atoms than for the 
molecules.

Figure 2 shows six energy curves for the ground state 
of CH3I. Those curves were obtained using REPs and the 
minimal basis sets.12,14 Each geometry is optimized at fixed 
r(C-I) using AREP-UHF calculations. Single and double exci­
tations are included in these CI calculations. Two CI energy 
curves, AREP-SOCI and REP-KRCI, exhibit qualitatively cor­
rect dissociations, which means that our KRCI program is 
adequate for probing nonlinear polyatomic molecules. A few

low-lying states were calculated by REP-KRCI in order to 
test the performance on excited states of the polyatomic mo­
lecules. The photoexcitation of CH3I may follow two dissocia­
tion channels^『(^vQ+CHs and IfPa/j+CH*24 C시culated 
energy curves of some low-lying states in Figure 3 are in 
good accordance with the experiment.24 Even the conical 
cross section, the crossover between 3E and 241 states is 
also present in the present KRCI results. As r(C-I) becomes 
long enough to be considered as the dissociated CH』，four 
excited states 3E, L42, 2E, and IE converge to the channel 
1(平3/2)+ 0氏 and the excited 아가e 241 does to the other 
아lann이The channel of 3E, L42,
2E, and IE, however, did not exactly coincide with that of 
L4i in the dissociation limit since the present KRCI is based 
on the single reference state which does not possess equiva­
lent p orbitals. The excitation energie옹 from the ground state 
L4i to 2E, 241, and 3E are 232, 209, and 224 nm, respecti­
vely, in reasonable agreement with the experimental broad 
band centered around 260 nm.25,26

Concluding Remarks

We have implemented the KRCI program to calculate exc­
ited states as well as the ground state of polyatomic mole­
cules having heavy atoms. This KRCI is based on determina­
nts composed of the products of two-component molecular 
spinors which are the solutions from the KRHF program 
and uses molecular spinor integrals with all the important 
one-electron relativistic effects including the spin-orbit inte­
raction.

Excitation energies of the group 14 and 16 elements calcu­
lated using the present KRCI program are in good accorda­
nce with the spectroscopic data. Rydberg states of K and 
Cs were investigated. Results indicate that the REP-KRCI 
method is slightly better than the AREP-SOCI for the calcu­
lation of spin-orbit splittings and that ESO of REP is a relia­
ble description of spin-orbit interactions even for the highly 
excited states. The KRCI scheme is a미e to dissociate diato­
mic molecule HBr properly. The electronic states of the poly­
atomic molecule CH3I are probed from the molecular region 
to the dissociation limit. The differences between AREP- 
SOCI and REP-KRCI calculations are not significant and can 
be attributed to the difference of the reference state. Wheth­
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er this will be true in general or not remains to be proved 
by more extensive test calculations. Any serious considera­
tion of dynamic correlation effects requires a more efficient 
version of the KRCI method and the work in this direction 
is in progress.
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