• Title/Summary/Keyword: chemical states

Search Result 850, Processing Time 0.025 seconds

Electronic Structure and Si L2,3-edge X-ray Raman Scattering Spectra for SiO2 Polymorphs: Insights from Quantum Chemical Calculations (양자화학계산을 이용한 SiO2 동질이상의 전자 구조와 Si L2,3-edge X-선 라만 산란 스펙트럼 분석)

  • Kim, Yong-Hyun;Yi, Yoo Soo;Lee, Sung Keun
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • The atomic structures of silicate liquids at high pressure provide insights into the transport properties including thermal conductivities or elemental partitioning behavior between rocks and magmas in Earth's interior. Whereas the local electronic structure around silicon may vary with the arrangement of the nearby oxygens, the detailed nature of such relationship remains to be established. Here, we explored the atomic origin of the pressure-induced changes in the electronic structure around silicon by calculating the partial electronic density of states and L3-edge X-ray absorption spectra of SiO2 polymorphs. The result showed that the Si PDOS at the conduction band varies with the crystal structure and local atomic environments. Particularly, d-orbital showed the distinct features at 108 and 130 eV upon the changes in the coordination number of Si. Calculated Si XAS spectra showed features due to the s,d-orbitals at the conduction band and varied similarly with those observed in s,d-orbitals upon changes in the crystal structures. The calculated Si XAS spectrum for α-quartz was analogous to the experimental Si XRS spectrum for SiO2 glass, implying the overall similarities in the local atomic environments around the Si. The edge energies at the center of gravity of XAS spectra were closely related to the Si-O distance, thus showing the systematic changes upon densification. Current results suggest that the Si L2,3-edge XRS, sensitive probe of the Si-O distance, would be useful in unveiling the densification mechanism of silicate glasses and melts at high pressure.

Comparison of TME Values of Imported Corns and ME Values Determined by In vitro Method (수입 옥수수들의 TME가와 In vitro 방법에 의해 측정한 ME가의 비교)

  • Cho, J.H.;Paik, I.K.;Hyun, Y.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.6
    • /
    • pp.737-744
    • /
    • 2007
  • An experiment was conducted to compare the ME values of imported corns measured by In vivo(TME) and In vitro(MEn, ME and MEpc) methods and to investigate the true amino acid availability(TAAA) and the true nutrient availability(TNA) of imported corns. For TME assay, twenty four 57-weeks-old Hy-Line roosters were assigned to fasting group(4 roosters) and four corn groups(5 roosters each): USA; corn produced in the United States, ARG; corn produced in Argentina, CHN; regular corn produced in China, CHNP; premium corn produced in China. The MEn, ME and MEpc values were determined by equations based on chemical analysis. The TME value of USA(3,745kcal/kg) in as fed basis was significantly (P<0.01) higher than ARG(3,555kcal/kg) and CHNP(3,518kcal/kg) but was not significantly different from CHN(3,671kcal/kg). The TME value of USA(4,144kcal/kg) in DM basis was not significantly different from CHN(4,060kcal/kg) and CHNP(4,008kcal/kg) but was significantly(P<0.05) higher than ARG(4,001kcal/kg). There were significant differences in TAAA of phenylalanine, histidine and arginine among imported corns. Those of USA were highest but overall TAAA was not significantly different among imported corns. True availability of NFE of USA, ARG and CHN was significantly(P<0.05) higher than that of CHNP. However, true availability of crude protein, crude fat, crude fiber and crude ash were not significantly different among corns. The correlation coefficient between TME and MEn value was 0.91 which was significant at P<0.1 but correlation coefficient between TME and ME value and between TME and MEpc value was 0.90 and 0.83, respectively which was not significant at P<0.1. In conclusion, US corn was highest in TME values and Chinese premium corn was not significantly different from regular Chinese corn. The MEn value obtained by equation based on chemical analysis may be used as a tool to evaluate TME value of corn.

Characteristics of Naturally Occurring Radioactive Materials in Groundwater from Aquifers Composed of Different Geological Settings in Ganghwa Island (강화도의 지질별 지하수 중 자연방사성 물질의 특성)

  • Kim, Ikhyun;Kim, MoonSu;Hamm, Se-Yeong;Kim, Hyunkoo;Kim, Dongsoo;Jo, Seongjin;Lee, Heonmin;Hwang, Jongyeon;Jo, Hunje;Park, Sunhwa;Chung, Hyenmi
    • Economic and Environmental Geology
    • /
    • v.51 no.1
    • /
    • pp.27-38
    • /
    • 2018
  • Groundwaters in different rock types (Mesozoic granite, Precambrian gneiss, and schist) of Ganghwa island, Incheon City were characterized by using naturally occurring radioactive materials (NORM) and hydrogeochemical constituents. For the study, groundwater samples from 69 wells had been collected over eight years. Statistical methods were applied to relate hydrogeochemical components and NORM in the groundwater samples. The groundwater samples belonged to $Ca(Na)-HCO_3$ types. The uranium concentrations in three groundwater samples exceeded 30 ug/L of United States Environmental Protection Agency (US EPA) maximum contaminant level (MCL). The radon concentrations in 28 groundwater samples exceeded 4,000 pCi/L (picocuries per Liter) of US EPA alternative maximum contaminant level (AMCL). Gross-alpha in all the groundwater samples did not exceed 15 pCi/L of US EPA MCL. The average concentrations of uranium and radon in groundwater were the highest in granite area, and then gneiss, schist areas in order. In schist area, the correlation coefficient (R) between radon and $HCO_3$ is -0.40 and R between uranium and $SO_4$ is 0.54. In gneiss area, the R between radon and uranium is 0.55 and the R between uranium and $SO_4$ is 0.41. According to factor analysis, each geological area shows different chemical characteristics. The statistical analysis of whole groundwater resulted in nearly no significant relationship among uranium, radon and chemical constituents. Subsequently, more detailed studies on hydrogeological, geochemical, and geological characteristics related to NORM are required to better understand the behavior and fate of NORM.

Study on the Structural and Transporting Property of Sr2Ru1-xCuxO4-y(0.0≤x≤0.5) (Sr2Ru1-xCuxO4-y(0.0≤x≤0.5) 화합물의 구조 및 전달 특성에 대한 연구)

  • Park, Jung-Chul
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.6
    • /
    • pp.614-618
    • /
    • 2003
  • $Sr_2Ru_{1-x}Cu_xO_{4-y}(0.0{\le}x{\le}0.5)$ compounds were prepared using a conventional solid state reaction. Based on the Rietveld refinements of X-ray diffraction results, it is revealed that $Sr_2Ru_{1-x}Cu_xO_{4-y}$ compounds are the single phases with K2NiF4 type tetragonal system in the range of 0=x=0.3, while the mixed phases of$Sr_2RuO_4$ and $Sr_2CuO_3$ in the range of $0.4{\le}x{\le}0.5$. By means of X-ray photoelectron spectroscopy, the valence states of Ru and Cu in $Sr_2Ru_{1-x}Cu_xO_{4-y}$, have been confirmed to 4+ and 2+, respectively. The bond length difference between $Ru-O_1 ({\times}4)\;and\;Ru-O_2 ({\times}2)\;in\;RuO_6$ octahedron is gradually decreased with increasing Cu content in $Sr_2Ru_{1-x}Cu_xO_{4-y}$, which results in the lower c/a ratio. So, it might be assured that the variation of local symmetry of $RuO_6$ octahedron is very closely related to the transporting property of $Sr_2Ru_{1-x}Cu_xO_{4-y}$ compounds. The behavior of resistivity discloses that the metallic property in $Sr_2RuO_4$ changes into the semiconducting one in proportion to the Cu content in $Sr_2Ru_{1-x}Cu_xO_{4-y}$.

Continuous Wet Oxidation of TCE over Supported Metal Oxide Catalysts (금속산화물 담지촉매상에서 연속 습식 TCE 분해반응)

  • Kim, Moon Hyeon;Choo, Kwang-Ho
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.206-214
    • /
    • 2005
  • Heterogeneously-catalyzed oxidation of aqueous phase trichloroethylene (TCE) over supported metal oxides has been conducted to establish an approach to eliminate ppm levels of organic compounds in water. A continuous flow reactor system was designed to effect predominant reaction parameters in determining catalytic activity of the catalysts for wet TCE decomposition as a model reaction. 5 wt.% $CoO_x/TiO_2$ catalyst exhibited a transient period in activity vs. on-stream time behavior, suggesting that the surface structure of the $CoO_x$ might be altered with on-stream hours; regardless, it is probable to be the most promising catalyst. Not only could the bare support be inactive for the wet decomposition reaction at $36^{\circ}C$, but no TCE removal also occurred by the process of adsorption on $TiO_2$ surface. The catalytic activity was independent of all particle sizes used, thereby representing no mass transfer limitation in intraparticle diffusion. Very low TCE conversion appeared for $TiO_2$-supported $NiO_x$ and $CrO_x$ catalysts. Wet oxidation performance of supported Cu and Fe catalysts, obtained through an incipient wetness and ion exchange technique, was dependent primarily on the kinds of the metal oxides, in addition to the acidic solid supports and the preparation routes. 5 wt.% $FeO_x/TiO_2$ catalyst gave no activity in the oxidation reaction at $36^{\circ}C$, while 1.2 wt.% Fe-MFI was active for the wet decomposition depending on time on-stream. The noticeable difference in activity of the both catalysts suggests that the Fe oxidation states involved to catalytic redox cycle during the course of reaction play a significant role in catalyzing the wet decomposition as well as in maintaining the time on-stream activity. Based on the results of different $CoO_x$ loadings and reaction temperatures for the decomposition reaction at $36^{\circ}C$ with $CoO_x/TiO_2$, the catalyst possessed an optimal $CoO_x$ amount at which higher reaction temperatures facilitated the catalytic TCE conversion. Small amounts of the active ingredient could be dissolved by acidic leaching but such a process gave no appreciable activity loss of the $CoO_x$ catalyst.

THE ECOLOGY, PHYTOGEOGRAPHY AND ETHNOBOTANY OF GINSENG

  • Hu Shiu Ying
    • Proceedings of the Ginseng society Conference
    • /
    • 1978.09a
    • /
    • pp.149-157
    • /
    • 1978
  • Ginseng is the English common name for the species in the genus Panax. This article gives a broad botanical review including the morphological characteristics, ecological amplitude, and the ethnobotanical aspect of the genus Panax. The species of Panax are adapted for life in rich loose soil of partially shaded forest floor with the deciduous trees such as linden, oak, maple, ash, alder, birch, beech, hickory, etc. forming the canopy. Like their associated trees, all ginsengs are deciduous. They require annual climatic changes, plenty of water in summer, and a period of dormancy in winter. The plant body of ginseng consists of an underground rhizome and an aerial shoot. The rhizome has a terminal bud, prominent leafscars and a fleshy root in some species. It is perennial. The aerial shoot is herbaceous and annual. It consists of a single slender stem with a whorl of digitately compound leaves and a terminal umbel bearing fleshy red fruits after flowering. The yearly cycle of death and renascence of the aerial shoot is a natural phenomenon in ginseng. The species of Panax occur in eastern North America and eastern Asia, including the eastern portion of the Himalayan region. Such a bicentric generic distributional pattern indicates a close floristic relationship of the eastern sides of two great continental masses in the northern hemisphere. It is well documented that genera with this type of disjunct distribution are of great antiquity. Many of them have fossil remains in Tertiary deposits. In this respect, the species of Panax may be regarded as living fossils. The distribution of the species, and the center of morphological diversification are explained with maps and other illustrations. Chemical constituents confirm the conclusion derived from morphological characters that eastern Asia is the center of species concentration of Panax. In eastern North America two species occur between longitude $70^{\circ}-97^{\circ}$ Wand latitude $34^{\circ}-47^{\circ}$ N. In eastern Asia the range of the genus extends from longitude $85^{\circ}$ E in Nepal to $140^{\circ}$ E in Japan, and from latitude $22^{\circ}$ N in the hills of Tonkin of North Vietnam to $48^{\circ}$ N in eastern Siberia. The species in eastern North America all have fleshy roots, and many of the species in eastern Asia have creeping stolons with enlarged nodes or stout horizontal rhizomes as storage organs in place of fleshy roots. People living in close harmony with nature in the homeland of various species of Panax have used the stout rhizomes or the fleshy roots of different wild forms of ginseng for medicine since time immemorial. Those who live in the center morphological diversity are specific both in the application of names for the identification of species in their communication and in the use of different roots as remedies to relieve pain, to cure diseases, or to correct physiological disorders. Now, natural resources of wild plants with medicinal virtue are extremely limited. In order to meet the market demand, three species have been intensively cultivated in limited areas. These species are American ginseng (P. quinquefolius) in northeastern United States, ginseng (P. ginseng) in northeastern Asia, particularly in Korea, and Sanchi (P. wangianus) in southwestern China, especially in Yunnan. At present hybridization and selection for better quality, higher yield, and more effective chemical contents have not received due attention in ginseng culture. Proper steps in this direction should be taken immediately, so that our generation may create a richer legacy to hand down to the future. Meanwhile, all wild plants of all species in all lands should be declared as endangered taxa, and they should be protected from further uprooting so that a. fuller gene pool may be conserved for the. genus Panax.

  • PDF

Analysis of the Level of Cognitive Demands about Concepts of the Changes of State and Kinetic Theory on 'Science 1' Textbooks in Junior High School (III) ('과학1' 중학교 교과서의 물질의 상태 변화와 분자 운동 내용이 요구하는 인지 수준 분석(제III보))

  • Park, Jieun;Park, Yesul;Kang, Soonhee
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.5
    • /
    • pp.640-655
    • /
    • 2013
  • The purpose of this study is to analyze the cognitive demands level of the description about 'changes of state' and 'kinetic theory' on the 'science 1' textbooks by the 2007 revised curriculum. The three types of curriculum analysis taxonomy have been used to analyze the cognitive demands level of those contents on the 6 kinds of 'science 1' textbooks. The most higher level of cognitive demands about the concepts have been discussed here due to the focus of the concepts. The first, the cognitive demand level about 'three states of substances' depending on the motion of their particles in 6 textbooks is a early formal operational stage because of using by the application of kinetic theory. The second, the cognitive demand level about 'diffusion' and 'evaporation' is a early formal operational stage, because the particles move around faster so they can change their position. The third, the cognitive level of the pressure and volume in a gas is a early formal operational stage because of explaining only phenomena in simple correspondence with formal model of kinetic theory. And simple functional relationships beyond linear on the graph of the volume and pressure of gas, the volume and temperature of gas is also a early formal operational stage. The fourth, the cognitive level of the energy of heat by a change of the state is also a early formal operational stage because kinetic theory picture accepted as providing explanation by the change of the state. And functional relationships beyond linear on the graph of the explanation of boiling point of water in water is also a early formal operational stage.

PREPARATION OF AMORPHOUS CARBON NITRIDE FILMS AND DLC FILMS BY SHIELDED ARC ION PLATING AND THEIR TRIBOLOGICAL PROPERTIES

  • Takai, Osamu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.3-4
    • /
    • 2000
  • Many researchers are interested in the synthesis and characterization of carbon nitride and diamond-like carbon (DLq because they show excellent mechanical properties such as low friction and high wear resistance and excellent electrical properties such as controllable electical resistivity and good field electron emission. We have deposited amorphous carbon nitride (a-C:N) thin films and DLC thin films by shielded arc ion plating (SAIP) and evaluated the structural and tribological properties. The application of appropriate negative bias on substrates is effective to increase the film hardness and wear resistance. This paper reports on the deposition and tribological OLC films in relation to the substrate bias voltage (Vs). films are compared with those of the OLC films. A high purity sintered graphite target was mounted on a cathode as a carbon source. Nitrogen or argon was introduced into a deposition chamber through each mass flow controller. After the initiation of an arc plasma at 60 A and 1 Pa, the target surface was heated and evaporated by the plasma. Carbon atoms and clusters evaporated from the target were ionized partially and reacted with activated nitrogen species, and a carbon nitride film was deposited onto a Si (100) substrate when we used nitrogen as a reactant gas. The surface of the growing film also reacted with activated nitrogen species. Carbon macropartic1es (0.1 -100 maicro-m) evaporated from the target at the same time were not ionized and did not react fully with nitrogen species. These macroparticles interfered with the formation of the carbon nitride film. Therefore we set a shielding plate made of stainless steel between the target and the substrate to trap the macropartic1es. This shielding method is very effective to prepare smooth a-CN films. We, therefore, call this method "shielded arc ion plating (SAIP)". For the deposition of DLC films we used argon instead of nitrogen. Films of about 150 nm in thickness were deposited onto Si substrates. Their structures, chemical compositions and chemical bonding states were analyzed by using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and infrared spectroscopy. Hardness of the films was measured with a nanointender interfaced with an atomic force microscope (AFM). A Berkovich-type diamond tip whose radius was less than 100 nm was used for the measurement. A force-displacement curve of each film was measured at a peak load force of 250 maicro-N. Load, hold and unload times for each indentation were 2.5, 0 and 2.5 s, respectively. Hardness of each film was determined from five force-displacement curves. Wear resistance of the films was analyzed as follows. First, each film surface was scanned with the diamond tip at a constant load force of 20 maicro-N. The tip scanning was repeated 30 times in a 1 urn-square region with 512 lines at a scanning rate of 2 um/ s. After this tip-scanning, the film surface was observed in the AFM mode at a constant force of 5 maicro-N with the same Berkovich-type tip. The hardness of a-CN films was less dependent on Vs. The hardness of the film deposited at Vs=O V in a nitrogen plasma was about 10 GPa and almost similar to that of Si. It slightly increased to 12 - 15 GPa when a bias voltage of -100 - -500 V was applied to the substrate with showing its maximum at Vs=-300 V. The film deposited at Vs=O V was least wear resistant which was consistent with its lowest hardness. The biased films became more wear resistant. Particularly the film deposited at Vs=-300 V showed remarkable wear resistance. Its wear depth was too shallow to be measured with AFM. On the other hand, the DLC film, deposited at Vs=-l00 V in an argon plasma, whose hardness was 35 GPa was obviously worn under the same wear test conditions. The a-C:N films show higher wear resistance than DLC films and are useful for wear resistant coatings on various mechanical and electronic parts.nic parts.

  • PDF

Understanding the Electrical Property of Si-doped β-Ga2O3 via Thermal Annealing Process (열처리 공정을 이용한 Si-doped β-Ga2O3 박막의 전기적 특성의 이해)

  • Lee, Gyeongryul;Park, Ryubin;Chung, Roy Byung Kyu
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.19-24
    • /
    • 2020
  • In this work, the electrical property of Si-doped β-Ga2O3 was investigated via a post-growth annealing process. The Ga2O3 samples were annealed under air (O-rich) or N2 (O-deficient) ambient at 800~1,200℃ for 30 mins. There was no correlation between the crystalline quality and the electrical conductivity of the films within the experimental conditions explored in this work. However, it was observed the air ambient led to severe degradation of the film's electrical conductivity while N2-annealed samples exhibited improvement in both the carrier concentration and Hall mobility measured at room temperature. Interestingly, the x-ray photoemission spectroscopy (XPS) revealed that both annealing conditions resulted in higher concentration of oxygen vacancy (VO). Although it was a slight increase for the air-annealed sample, high resistivity of the film strongly suggests that VO cannot be a shallow donor in β-Ga2O3. Therefore, the enhancement of the electrical conductivity of N2-annealed samples must be originated from something other than VO. One possibility is the activation of Si. The XPS analysis of N2-annealed samples showed increasing relative peak area of Si 2p associated with SiOx with increasing annealing temperature from 800 to 1,200℃. However, it was unclear whether or not this SiOx was responsible for the improvement as the electrical conductivity quickly degraded above 1,000℃ even under N2 ambient. Furthermore, XPS suggested the concentration of Si actually increased near the surface as opposed to the shift of the binding energy of Si from its initial chemical state to SiOx state. This study illustrates the electrical changes induced by a post-growth thermal annealing process can be utilized to probe the chemical and electrical states of vacancies and dopants for better understanding of the electrical property of Si-doped β-Ga2O3.

The Morphology, Physical and Chemical Characteristics of the Red-Yellow Soils in Korea (우리나라 전토양(田土壤)의 특성(特性) (저구릉(低丘陵), 산록(山麓) 및 대지(臺地)에 분포(分布)된 적황색토(赤黃色土)를 중심(中心)으로))

  • Shin, Yong Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.1
    • /
    • pp.35-52
    • /
    • 1973
  • Red Yellow Soils occur very commonly in Korea and constitute the important upland soils of the country which are either presently being cultivated or are suitable for reclaiming and cultivating. These soils are distributed on rolling, moutain foot slopes, and terraces in the southern and western parts of the central districts of Korea, and are derived from granite, granite gneiss, old alluvium and locally from limestone and shale. This report is a summary of the morphology, physical and chemical characteristics of Red Yellow Soils. The data obtained from detailed soil surveys since 1964 are summarized as follows. 1. Red-Yellows Soils have an A, Bt, C profile. The A horizon is dark colored coarse loamy or fine loamy with the thin layer of organic matter. The B horizon is dominantly strong brown, reddish brown or yellowish red, clayey or fine loamy with clay cutans on the soil peds. The C horizon varies with parent materials, and is coarser texture and has a less developed structure than the Bt horizon. Soil depth, varied with relief and parent materials, is predominantly around 100cm. 2. In the physical characteristics, the clay content of surface soil is 18 to 35 percent, and of subsoil is 30 to 90 percent nearly two times higher than the surface soil. Bulk density is 1.2 to 1.3 in the surface soil and 1.3 to 1.5 in the subsoil. The range of 3-phase is mostly narrow with 45 to 50 percent in solid phase, 30 to 45 percent in liquid one, and 5 to 25 percent in gaseous state in the surface soil; and 50 to 60 solid, 35 to 45 percent liquid and less than 15 percent gaseous in the subsoil. Available soil moisture capacity ranges from 10 to 23 percent in the surface soil, and 5 to 16 percent in the subsoil. 3. Chemically, soil reaction is neutral to alkaline in soils derived from limestone or old fluviomarine deposits, and acid to strong acid in other ones. The organic matter content of surface soil varying considerably with vegetation, erosion and cultivation, ranges from 1.0 to 5.0 percent. The cation exchange capacity is 5 to 40 me/100gr soil and closely related to the content of organic matter, clay and silt. Base saturation is low, on the whole, due to the leaching of extractable cations, but is high in soils derived from limestone with high content of lime and magnesium. 4. Most of these soils mainly contain halloysite (a part of kaolin minerals), vermiculite (weathered mica), and illite, including small amount of chlorite, gibbsite, hematite, quartz and feldspar. 5. Characteristically they are similar to Red Yellow Podzolic Soils and a part of Reddish Brown Lateritic Soils of the United States, and Red Yellow Soils of Japan. According to USDA 7th Approximation, they can be classified as Udu Its or Udalfs, and in FAO classification system to Acrisols, Luvisols, and Nitosols.

  • PDF