• Title/Summary/Keyword: chemical resistance test

Search Result 579, Processing Time 0.043 seconds

Evaluation of Durability Properties of Cement Matrix Using the Polymer of Powder Type (분말형 폴리머를 사용한 시멘트 경화체의 내구성 평가)

  • Kim, Seong-Soo;Jung, Ho-Seop;Lee, Jeong-Bae;Yoon, Ha-Young;Koh, Joon-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.495-498
    • /
    • 2005
  • It was investigated the durability of the concrete to improve construction materials with polymer cement mortar in this study. With the popularity of repair and rehabilitation material, some mixtures composed of Ethylene Vinyl Acetate(EVA) was studied. Ethylene Vinyl Acetate(EVA) carried out tests to determine its properties which a include: freezing-thawing resistance test, carbonation test, and chemical resistance test. Result of freezing-thawing resistance test, mass change ratio and chemical resistance test, mass change ratio decreased of 12 and $15\~45\%$ as compared with control mortar. Carbonation depth decreased $3.7\~5.6mm$ as polymer-cement ratio increased $1\~4\%$.

  • PDF

Evaluation of Chemical Resistance of Epoxy Resin Injection Type Leakage Repairing Materials Applied to Underground Concrete Structures (지하 콘크리트 구조물에 적용되는 에폭시 수지계 주입형 누수보수재료의 화학저항성능 평가)

  • Park, So-young;Kim, Soo-Yeon;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.41-42
    • /
    • 2017
  • In this study, an investigation was made to study the chemical resistance performance of epoxy resin injection type leakage repair material used in the Korean construction market in accordance to the test method outlined in "ISO TS 16774, Part 2; Test Method for Chemical Resistance." This is a new standard document used for quality control method of injection type repair material used for leakage cracking of underground concrete structures. The results of this study can be expected to be utilized as reference data that can be used for quality improvement of the maintenance methods for future construction.

  • PDF

Acid Resistance Properties of RSLMC for Maintenance and Repair (유지 보수를 위한 RSLMC의 산성 저항성)

  • Hong, Chang-Woo;Kim, Dong-Ho;Lee, Hun-Jae;Kwon, Hyouk-Chan;Yun, Kyong-Ku
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.161-168
    • /
    • 2002
  • Latex modified concrete is governed by both cement hydration and polymer film formation processes in its binder phase. Such the reactions are expected to improve the polymer-cement co-matrixes themselves and the bond between the cement hydrates and aggregates, and to improve the properties of hardened latex-modified concrete. The purpose of this study was to study the strength and chemical resistance of Rapid-setting latex modified concrete(RSLMC) with the main experimental variables such as latex content(0, 5, 10, 15, 20%) and water-cement ratio(36, 38, 40%) at latex content 15%. Water absorption test was earned out to estimate water permeability resistance. Chemical resistance test was carried out to measure the weight change and to observe the appearance of RSLMC immersion in hydrochloric acid, sulfuric acid, and calcium choloride.

  • PDF

Evaluation of Chemical Resistance Performance of Synthetic Rubber and Cement Based Injection Repair Materials Used in Underground Concrete Structures (지하 콘크리트 구조물에 적용되는 합성고무계 및 시멘트계 주입형 보수재료의 화학 저항성능평가)

  • Kim, Soo-Yeon;Lee, Yeon-Sil;Song, Je-Young;Kim, Byoungil;Oh, Sang-Keun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.148-155
    • /
    • 2017
  • In this study, by using the international standards ISO TS 16774, Part 2 Test method for chemical resistance as a quality control method of injection type repair material used for leakage crack of underground concrete structure, the performance requirement against of chemical environment of underground concrete structures for repair materials was tested. For this testing 3 types for each of the 2 classes of repair materials(synthetic rubber, cement), with a total of 9 types repair materials, were selected and examined. As a result, the test results showed that the smallest performance deterioration by the change in the mass was with the synthetic rubber(RG) type as opposed to the cement type system, showing that the synthetic rubber type had the strongest relative resistance to chemical exposure. Furthermore, it is necessary to investigate the material with high resistance to chemical substances and to examine the material which can increase resistance to sodium hydroxide and sodium chloride in cement system. These results can be used as a basic index for the selection of repair materials with the strongest resistance to chemical environment found in concrete structures. In addition, it is expected that the test results derived in this study can be used as reference data that can be reflected in the quality improvement of the maintenance material to be developed later.

Investigation on Watertight Properties of the Latex Concrete for Protection Layers of the Slab on Vibrating Strucutres (진동구조물 슬래브 보호층으로서 라텍스 콘크리트의 수밀특성 분석)

  • Lee, Sun-Gyu;Lee, Jung-Hoon;Choi, Sung-Min;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.247-252
    • /
    • 2009
  • The LMC method of construction which have application to the road bridge is being considered the least relative importance about the watertight performance, because it focused on the durability of concrete. However, The LMC which is being expanded scope of application to the method of construction has grown importance about the watertight performance on the usability and maintenance side as well as durability. In this study, The latex concrete of two types which are different from mingled-ratio of the latex made a comparison to the compressive strength, watertight performance, dynamic wheel load resistance performance and confirmed what it has resistibility about chemical action through the chemical resistance test. The initial strength and watertight performance showed that were tendency the downward at 14 days. However, The long-term strength after 28 days showed that it has firm performance. In consequence, The initial curing of latex concrete is required to scrupulous care and attention at the site application. As a chemical resistance test result, The specimen that is steeped in sulphuric acid solution of 2% discovered the delamination phenomenon. However, it was confirmed that delamination phenomenon don't have an effect on the compressive strength. Moreover, As a dynamic wheel load resistance test result, The latex concrete was concluded to confirming the durability and running stability, because it had hardly any thickness reduction of latex concrete surface about dynamic wheel load and rarely found crack and delamination.

  • PDF

Physical Aging Mechanism of Epoxy Coating by Hygrothermal Cycling Test

  • Kim, Min Hong;Lee, Gun Dae;Park, Jin Hwan
    • Corrosion Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.177-180
    • /
    • 2006
  • The anticorrosive performance of epoxy coating was examined by using the hygrothermal cyclic test and the degradation mechanism of the coating was investigated by using the AC impedance method. The relationship between the results obtained from different tests was studied. It was revealed that the hygrothermal cyclic test can be used as an effective acceleration test for the degradation of organic coating. It was also found in hygrothermal cyclic test that the epoxy coatings have the resistance to stresses at some extent. The degradation of organic coating seems to be caused by the decrease of resistance of coating and the increase of both capacitance and free volume in the organic coating.

Chemical Resistance and Field Trial of 3D-Printed Plastic Ball Bearing Used in Electric Motors for Chemical Processes (화학공정용 전동기에 사용된 3D 프린팅 플라스틱 볼베어링의 내화학성 평가 및 현장적용 연구)

  • Youngjun Kwon;Myounggyu Noh
    • Tribology and Lubricants
    • /
    • v.39 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Fluid pumps in chemical processes are typically driven by electric motors. Even if the motor is separated from the pump with seals, wear resulting from friction and misalignment can lead to leakage of chemical fluid, causing corrosion in the bearing supporting the motor, and, eventually, failure of the motor. It is thus a standard procedure to replace bearings at regular intervals. In this article, we propose 3D-printed plastic ball bearings for use as an alternative to commercial stainless-steel ball bearings. The plastic bearings are easy to manufacture, require less time to replace, and are chemically resistant. To validate the applicability of the plastic bearings, we first conducted chemical resistance tests. Bearings were immersed in 30 caustic acid and 30 nitric acid for 30 min and 24 h, respectively. The test results showed no corrosive damage to the bearings. A test rig was set up to compare the performance of the plastic bearings with that of the commercially equivalent deep-groove ball bearings. Loading test results showed that the plastic bearings performed as well as the commercial bearing in terms of vibration level and load-handling capability. Finally, a plastic bearing was subjected to a clean-in-place process for three months. It actually outperformed the commercial bearing in terms of chemical resistance. Thus, 3D-printed plastic bearings are a viable alternative to stainless-steel ball bearings.

Surface Treatment of Automotive Cast Parts of Magnesium Alloy

  • Sim, Yangjin;Kim, Jongmyung
    • Corrosion Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.102-108
    • /
    • 2003
  • The surface treatments. Chrome/Manganese and Modified Chrome Pickle, that are treated to improve the anti-corrosion property which is needed to increased the probability of prototype product enabled the sand cast Magnesium test specimens to have better corrosion resistance than non-treated one. Sand cast Magnesium specimens which was treated only with chemical conversion coating had same corrosion resistance with the Steel specimens plated by Zinc, and the another one that had the finishing treatment(painting) worked on the chemical surface treatment had the corrosion resistance property to meet to FPO-3 requirement. We also investigated the multiple finishing system(chemical surface treatment + 3 coating) to test the severe condition that magnesium should to endure.

An Experimental Study on the Salt Damage Resistance of High Durable Concrete (고내구성콘크리트의 염해저항성에 관한 실험적 연구)

  • Yoon, Jai-Hwan;Jaung, Jae-Dong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.3
    • /
    • pp.73-81
    • /
    • 2003
  • In this paper, salt damage resistance of high durable concrete was tested. High durable concrete was made by using low water cement ratio, chemical admixture called super-durable admixture and mineral admixtures such as fly-ash, ground granulated blast-furnace slag, silica fume. Two kinds of salt damage resistance test were carried out. One method is chloride ion penetration test(ASTM C1202), and the other one is depth of chloride penetration test in saline solution. Test results were as followers: 1) The depth of chloride ion penetration increased exponentially as water cement ratio was increased and time passed. 2) Super-durable admixture had little effect on the improvement of salt damage resistance of concrete. 3) Silica fume and ground granulated blast-furnace slag were effective on salt damage resistance because of pozzolanic reaction, but fly-ash had a little effect.

Development of chemical conversion coating process for Mg-Al alloy and its anti-corrosion property (마그네슘-알루미늄 합금의 화성처리 공정 개발과 그 내식성 평가)

  • Kim, Seong-Jong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.265-266
    • /
    • 2006
  • The chemical conversion coating formed on magnesium alloy investigated for low cost and harmless in environment by using the colloidal silica as the main component. The film formed in 298 K is thick, the film, which was thought combination of Si-O, was formed. The film formed in 313 K is thinner than that in 298 K. The quantity of film formed at high temperature such as 333 K and 353 K is smaller than dissolved quantity. At the anodic polarization experiment, corrosion resistance in sealing by hot water after chemical conversion treatment in basic solution condition get worse than that in comparison with basic solution condition. In salt spray test, the ratio of black rust on specimen that did not conducted chemical conversion treatment was five times or more compared with those of chemical conversion treated specimen. The film thickness of chemical conversion coating produced by alkali treatment process is thinner than in comparison with that of specimen produced in basic chemical conversion treatment solution condition. It is thought, however, that it showed good corrosion resistance during salt spray test because the area of microcracks is small.

  • PDF