• Title/Summary/Keyword: chemical recycle

Search Result 228, Processing Time 0.028 seconds

A Study on Hydration Properties of Recycled Cement Mortar using Admixture Materials (혼화재료를 혼입한 재생시멘트 모르터의 수화특성에 관한 연구)

  • Park, Cha-Won;Kang, Byeung-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.4
    • /
    • pp.79-86
    • /
    • 2004
  • The purpose of this study was the development of a recycling process to recover the hydraulic properties of hydration products which account for a large proportion of cementitious powder from concrete waste. This process was performed to recycle cementitious powder as recycle cement. Therefore, after the theoretical consideration of the properties of recycle process of recycled aggregates and cementitious powder, we investigated the hydraulic properties of cementitious powder under various temperature conditions in hardened mortar which was modeled on concrete waste. And we analyzed properties of chemical reactions of recycled cement with admixture materials such as Fly-Ash, Blast Furnace Slag As a result of the experiment, the most effective method to recover hydraulic properties of the cementitious powder from concrete waste was condition of burning at 700℃ for 120 minute. And it is shown that the fluidity of mortar was decreased rapidly when the burning temperature of recycle cement was increased. However, the compressive strength and fluidity were improved significantly when admixture materials such as Fly-Ash or Blast Furnace Slag was added.

Optimization of Decolorizing and Carding Condition for Recycle Materials of Colored Waste Silk Fabrics (폐견직물의 재활용을 위한 탈색과 개섬조건의 최적화)

  • Lee, Youn-Eung;Lee, Sun-Kun;Joo, Chsang-Whan
    • Textile Coloration and Finishing
    • /
    • v.17 no.6 s.85
    • /
    • pp.42-50
    • /
    • 2005
  • Silk fabrics are widely used as high quality cloth, interior, quilting and bedding materials because of having excellent touch, drape, resilience and low specific gravity characteristics. But, many waste silk materials are produced during the reeling, spinning, weaving, dyeing and finishing processes. From this fact, the recycle of waste silks is interested in studying for the application of industrial textile materials such as filter, oil absorbent and wound protector. Thus, this research has surveyed the decolorizing and carding characteristics in order to recycle the colored waste silk materials. As the results, the carding condition of waste silk fabrics was optimized with different fiber lengths and curding passage. In addition, the fiber failure mechanism from the wasted silk microdamage caused by carding process was investigated. Also it was found that longitudinal and transverse cracks, abrasion and pilling were formed on the surface of wasted silk fibers.

The Influence of Mechanical Properties with the Number of Recycling of Fiber-reinforced Thermoplastic Composites Damaged by Impact (충격에 의해 손상된 섬유강화 열가소성 수지 복합재료의 재활용 횟수에 따른 물성의 변화)

  • Bae, Kwak Jin;Lee, Joon Seok
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.75-79
    • /
    • 2022
  • In this study, the effect of mechanical and chemical properties of glass fiber reinforced thermoplastic (GFRTPs) according to the number of recycling was confirmed. The composite materials were manufactured through a hot press compression molding process using an E-glass chopped strand mat and a polypropylene film. Four specimens were named according to the number of recycled test repeat: First manufacture, 1st Recycle, 2nd Recycle, and 3rd Recycle. To investigate the mechanical properties of the prepared specimen, tensile test, flexural test, drop-weight impact test, differential scanning calorimetry (DSC), and field emission electron gun-scanning electron microscope (FE-SEM) was performed. As a result, as the number of recycling steps repeat, the degree of crystallization, tensile strength, elastic modulus, and flexural strength were increased, but the impact properties were greatly reduced.

A study on the techniques of large scale chemical process system analysis (화학공정에 있어서의 대규모공정 해석방법)

  • 조인호;문장호;윤인섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.560-565
    • /
    • 1986
  • For the control of chemical process, optimal value of the process should be known at first. And process simulation is the previous step of optimal value calculation. However it is not a simple work to analyze chemical process system. Especially for the large scale chemical process system, many difficulties such as non-linearity and complexity caused by recycle streams should be overcome. In this paper, three strategies of large scale chemical process analysis were explained and discussed with case studies.

  • PDF

Mass transfer in cross-flow dialyzer with internal recycle

  • Yeh, Ho-Ming;Chen, Chien-Yu
    • Membrane and Water Treatment
    • /
    • v.4 no.4
    • /
    • pp.251-263
    • /
    • 2013
  • The internal reflux effect on dialysis through the retentate phase of a countercurrently cross-flow rectangular module is investigated. Theoretical analysis of mass transfer in cross-flow devices with or without recycling is analogous to heat transfer in cross-flow heat exchangers. In contrast to a device without reflux, considerable mass transfer is achievable if cross-flow dialyzers are operated with reflux, which provides an increase in fluid velocity, resulting in a reduction in mass-transfer resistance. It is concluded that reflux can enhance mass transfer, especially for large flow rate and feed-concentration operated under high reflux ratio.

Recycling of Poly(ethylene terephthalate) via Methanolysis without Catalyst (무촉매 메탄올 분해에 의한 Poly(ethylene terephthalate)의 재활용에 관한 연구)

  • Lee, Yoon-Bae;shin, Jae-Sick
    • Clean Technology
    • /
    • v.8 no.1
    • /
    • pp.39-44
    • /
    • 2002
  • In order to recycle poly(ethylene terephthalate), methanolysis has been investigated at elevated temperature and under high pressure without catalyst to afford dimethyl terephthalate and ethylene glycol. The reaction was carried out under 62 atm, $310^{\circ}C$ for 50min to obtain 98% dimethyl terephthalate. The method has been suggested as a simple and economical one to recycle the poly(ethylene terephthalate).

  • PDF

Hydrodynamics and parametric study of an activated sludge process using residence time distribution technique

  • Sarkar, Metali;Sangal, Vikas K.;Bhunia, Haripada
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.400-408
    • /
    • 2020
  • Hydrodynamic study of Activated Sludge Process (ASP) is important to optimize the reactor performance and detect anomalies in the system. Residence time distribution (RTD) study has been performed using LiCl as tracer on a pilot scale aeration tank (AT) and ASP, treating the pulp and paper mill effluent. The hydraulic performance and treatment efficiency of the AT and ASP at different operating parameters like residence time, recycle rate was investigated. Flow anomalies were identified and based on the experimental data empirical models was suggested to interpret the hydrodynamics of the reactors using compartment modelling technique. The analysis of the RTD curves and the compartment models indicated increase in back-mixing ratio as the mean hydraulic retention time (MHRT) of the tank was increased. Bypassing stream was observed at lower MHRT. The fraction of dead zone in the tank increased by approximate 20-25% with increase in recycle rate. The fraction of the stagnant zone was found well below 5% for all performed experiments, which was under experimental error. The substrate removal of 91% for Chemical oxygen demand and 96% for Biochemical oxygen demand were observed for the ASP working at a hydraulic mean residence time 39 h MRT with a 20% recycling of activated sludge.

A Study on Recycle of Abrasive Particles in One-used Chemical Mechanical Polishing (CMP) Slurry (산화막 CMP 슬러리의 연마 입자 재활용에 관한 연구)

  • Park, Sung-Woo;Seo, Yong-Jin;Kim, Gi-Uk;Choi, Woon-Sik;Kim, Chul-Bok;Kim, Sang-Yong;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.145-148
    • /
    • 2003
  • Recently, the recycle of CMP (chemical mechanical polishing) slurries have been positively considered in order to reduce the high COO (cost of ownership) and COC (cost of consumables) in CMP process. Among the composition of slurries (buffer solution, bulk solution, abrasive particle, oxidizer, inhibitor, suspension, antifoaming agent, dispersion agent), the abrasive particles are one of the most important components. Especially, the abrasive particles of slurry are needed in order to achieve a good removal rate. However, the cost of abrasives, is still very high. In this paper, we have collected the silica abrasive powders by filtering after subsequent CMP process for the purpose of abrasive particle recycling. And then, we have studied the possibility of recycle of reused silica abrasive through the analysis of particle size and hardness. Also, we annealed the collected abrasive powders to promote the mechanical strength of reduced abrasion force. Finally, we compared the CMP characteristics between self-developed KOH-based silica abrasive slurry and original slury, As our experimental results, we obtained the comparable removal rate and good planarity with commercial products. Consequently, we can expect the saving of high cost slurry.

  • PDF

Effect of Various Factors on the Operational Stability of Immobilized Cells for Acrylamide Production in a Packed Bed Reactor

  • Lee, Cheo-Young;Choi, Sang-Kyo;Chang, Ho-Nam
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.1
    • /
    • pp.39-45
    • /
    • 1993
  • The effect of concentrations of phosphate buffer and acrylonitrile, pH, and various salts on the operational stability of the immobilized cells of Brevibacterium CH2 in a packed bed reactor were investigated. The effects of salts and carriers on the swelling of the immobilized beads during hydrolysis in a columnreactor were also investigated. Immobilization of the cells in Ba-alginate was more desirable than those in polyacrylamide and Ca-alinate for the swelling of the immobilized beads and the desired quality of the acrylamide produced. High quality acrylamide was produced using the Ba-alginate beads in a recycle fed-batch reactor without using an isotonic substrate. The conversion yield was nearly 100%, including a trace amount of acrylic acid produced as a by-product.

  • PDF

A Submerged Membrane Bioreactor with Anoxic-oxic Recycle for the Treatment of High-strength Nitrogen Wastewater

  • Shim, Jin-Kie;Yoo, Ik-Keun;Lee, Young-Moo
    • Korean Membrane Journal
    • /
    • v.3 no.1
    • /
    • pp.32-38
    • /
    • 2001
  • Using the hollow fiber membrane module in a lab-scale membrane bioreactor, the anoxic- oxic (AO) process for nitrogen removal was operated for about one year. For the influent wastewater containing 1,200-1,400 mg $1^{-1}$ of CODcr and 200-310 mg $1^{-1}$ of nitrogen, this process achieved a high quality effluent of less than 30 mgCOD $liter^{-1}$ and 50 mgN $liter^{-1}$. The removal rate of organics was above 98% at a loading rate larger than 2.5 kgCOD $m^{-3}$$d^{-1}$. When the internal recycle from the oxic to the anoxic reactor changed room 2n to 600% rout the influent flow rate, the nitrogen removal rate increased from about 70 to 90% at a loading rate of 0.4 kgT-N m-s d-1. The initial increase of transmembrane pressure (TMP) was observed after a 4-month operation while maintaining the flux and MLSS concentration at 7-9 1 $m^2$ $h^{-1}$ and 6,000-14,000 mg $1^{-1}$, respectively. The TMP could be maintained below 15 cmHg for an 8-month operation. The chemical cleaning with an acid followed by an immersion in an alkali solution gave better cleaning result with the membrane operated for 10 month rather than that only by an alkali immersion.

  • PDF