• Title/Summary/Keyword: chemical reactivity

Search Result 814, Processing Time 0.025 seconds

A Kinetic Study on the Synthesis of Dimethylcarbonate by Using Immobilized Ionic Liquid Catalyst (고정화된 이온성 액체 촉매를 이용한 디메틸카보네이트 합성 반응에 대한 속도론적 고찰)

  • Kim, Dong-Woo;Kim, Dong-Kyu;Kim, Cheol-Woong;Koh, Jae-Cheon;Park, DaeWon
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.332-336
    • /
    • 2010
  • Ionic liquid immobilized on mesoporous amorphous silica was prepared from the coupling of 1-(triethoxysilylpropyl)-3-n-alkyl-imidzolium halides with tetraethyl orthosilicate(TEOS) through template-free condensation under strong acidic conditions. The immobilized 1-n-butyl-3-methyl imidazolium bromide ionic liquid on amorphous silica(BMImBr-AS) was proved to be an effective heterogeneous catalyst for the synthesis of dimethyl carbonate(DMC) from transesterification of ethylene carbonate(EC) with methanol. High temperature, high carbon dioxide pressure and long reaction time were favorable for the reactivity of BMImBr-AS. Kinetic studies based on two step reactions revealed that the proposed reaction model fitted well the experimental data. The apparent activation energy was estimated to be 67.4 kJ/mol.

Differential Pulse Voltammetric Determination of Iron(II) ion with a Nafion-Ethylenediamine Modified Glassy Carbon Electrode (Nafion-ethylenediamine이 수식된 유리탄소전극에 의한 시차펄스전압전류법으로 철(II) 이온의 정량)

  • Kyong Wone Kim;Hee Cheol Kim;Sung-Hyun Kim;Byung Ho Park;Yeon Hee Kim;Kyong Nam Kim;Yong Chun Ko
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.2
    • /
    • pp.115-120
    • /
    • 2003
  • Determination of iron(II) ion with a perfluorinated sulfonated polymer(nafion)-ethylenediamine(en) modified glassy carbon electrode was studied. It was based on the chemical reactivity of an immobilized layer(nafion-en) to yield complex $[Fe(en)_3]^{+2}$. The oxidation peak potential by differential pulse voltammetry(DPV) was observed at 0.340${\pm}$0.015 V(vs. Ag/AgCl). The linear calibration curve was obtained in iron(II) ion concentration range $5{\times}10^{-6}{\sim}0.2{\times}10^{-3} M(0.28{\sim}11.17\; mg/L)$, and the detection limit(3s) was $1.89{\times}10^{-5}$M(1.056 mg/L).

Conceptual Design and Feasibility Study on 0.5 MWth Pressurized Chemical Looping Combustor (0.5 MWth 가압 케미컬루핑 연소기 개념설계 및 구현 가능성 조사)

  • RYU, HOJUNG;LEE, DONGHO;JANG, MYOUNGSOO;KIM, JUNGHWAN;BAEK, JEOM-IN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.2
    • /
    • pp.201-210
    • /
    • 2016
  • To develop a pressurized chemical looping combustor, conceptual design of 0.5 MWth chemical looping combustor was performed by means of mass and energy balance calculations. Based on the conceptual design, reactivity of oxygen carrier and solid circulation rate were selected as key parameters. Sensitivity analysis of those key parameters were conducted with the change of oxygen carrier utilization percent from 5 to 50% and proper solid circulation rate and solid conversion rate to meet 98% of $CO_2$ selectivity were confirmed. Feasibility of 0.5 MWth pressurized chemical looping combustor was confirmed by experimental studies to find real solid circulation rate and $CO_2$ selectivity within the operating conditions based on the conceptual design. We could varied very wide range of solid circulation rate in two interconnected fluidized bed system. We also got enough $CO_2$ selectivity more than 98% in semi-continuous chemical looping combustor using OCN717 oxygen carrier. Consequently, feasibility of 0.5 MWth pressurized chemical looping combustor was confirmed.

Development of MSDS Map for Visual Safety Management of Hazardous and Chemical Materials (유해화학물질의 시각적 안전관리를 위한 MSDS 지도 개발)

  • Shin, Myungwoo;Suh, Yongyoon
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.2
    • /
    • pp.48-55
    • /
    • 2019
  • For preventing the accidents generated from the chemical materials, thus far, MSDS (Material Safety Data Sheet) data have been made to notify how to use and manage the hazardous and chemical materials in safety. However, it is difficult for users who handle these materials to understand the MSDS data because they are only listed based on the alphabetical order, not based on the specific factors such as similarity of characteristics. It is limited in representing the types of chemical materials with respect to their characteristics. Thus, in this study, a lots of MSDS data are visualized based on relationships of the characteristics among the chemical materials for supporting safety managers. For this, we used the textmining algorithm which extracts text keywords contained in documents and the Self-Organizing Map (SOM) algorithm which visually addresses textual data information. In the case of Occupational Safety and Health Administration (OSHA) in the United States, the guide texts contained in MSDS documents, which include use information such as reactivity and potential risks of materials, are gathered as the target data. First, using the textmining algorithm, the information of chemicals is extracted from these guide texts. Next, the MSDS map is developed using SOM in terms of similarity of text information of chemical materials. The MSDS map is helpful for effectively classifying chemical materials by mapping prohibited and hazardous substances on the developed the SOM map. As a result, using the MSDS map, it is easy for safety managers to detect prohibited and hazardous substances with respect to the Industrial Safety and Health Act standards.

Hazard Assessment on Chlorine Distribution Use of Chemical Transportation Risk Index (화학물질 운송위험지수를 활용한 염소(Chlorine) 유통 위해성 평가)

  • Kim, Jeong Gon;Byun, Hun Soo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.755-767
    • /
    • 2014
  • Chlorine is one of the most produced and most used non-flammable chemical substances in the world even though its toxicity and high reactivity cause the ozone layer depletion. However, in modern life, it is impossible to live a good life without using Chlorine and its derivatives since they are being used as an typical ingredient in more than 40 percent of the manufactured goods including medicines, detergents, deodorant, fungicides, herbicides, insecticides, and plastic, etc. Even if Chlorine has been handled and distributed in various business (small and medium-sized businesses, water purification plants, distribution company, etc.), there have been few researches about its possible health hazard and transportation risks. Accordingly, the purpose of this paper is to make a detailed assessment of Chlorine-related risks and to model an index of chemicals transportation risks that is adequate for domestic circumstances. The assessment of possible health hazard and transportation risks was made on 13 kinds of hazardous chemicals, including liquid chlorine. This research may be contributed to standardizing the risk assessment of Chlorine and other hazardous chemicals by using an index of transportation risks.

Reaction Characteristics of Five Kinds of Oxygen Carrier Particles for Chemical-Looping Combustor (매체순환식 가스연소기 적용을 위한 5가지 산소공여입자들의 반응특성)

  • Ryu, Ho-Jung;Kim, Gyoung-Tae;Lim, Nam-Yun;Bae, Seong-Youl
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.1
    • /
    • pp.24-34
    • /
    • 2003
  • For gaseous fuel combustion with inherent $CO_2$ capture and low NOx emission, chemical-looping combustion may yield great advantages for the savings of energy to $CO_2$ separation and suppressing the effect on environment, In chemical-looping combustor, fuel is oxidized by metal oxide medium in a reduction reactor. Reduced particles are transported to oxidation reactor and oxidized by air and recycled to reduction reactor. The fuel and the air are never mixed, and the gases from reduction reactor, $CO_2$ and $H_2O$, leave the system as separate stream. The $H_2O$ can be easily separated by condensation and pure $CO_2$ is obtained without any loss of energy for separation. In this study, five oxygen carrier particles such as NiO/bentonite, NiO/YSZ, $(NiO+Fe_2O_3)VYSZ$, $NiO/NiAl_2O_4$, and $Co_{\chi}O_y/CoAl_2O_4$ were examined &om the viewpoints of reaction kinetics, oxygen transfer capacity, and carbon deposition characteristics. Among five oxygen particles, NiO/YSZ particle is superior in reaction rate, oxygen carrier capacity, and carbon deposition to other particles. However, at high temperature ($>900^{\circ}C$), NiO/bentonite particle also shows enough reactivity and oxygen carrier capacity to be applied in a practical system.

Membrane Performance and Chemical Instability of 1,3,5-Benzenetricarbonyl Trichloride (1,3,5-Benzenetricarbonyl Trichloride의 화학적 불안정성과 분리막 성능)

  • Park, Chul Ho;Kim, Chan-soo;Sim, Joonmok;Park, Hyun-Seol;Joe, Yun-Haeng
    • Membrane Journal
    • /
    • v.30 no.3
    • /
    • pp.200-204
    • /
    • 2020
  • 1,3,5-benzenetricarbonyl trichloride is a chemical substance in which three acyl chlorides are located at 1,3,5 position in the benzene ring, and is an important chemical for the area where the good physical and chemical properties are required through high degree of crosslinking. In particular, it is possible to form a three-dimensional structure having a certain pore size, it is used in various separation and purification fields. However, the high reactivity of acyl chloride has the advantage of a fast reaction rate, which means that it is difficult to control chemically to have a certain performance in other aspects. Therefore, in this study, we observed how the chemical change of 1,3,5-benzenetricarbonyl trichloride affected the membrane performance.

Filler-Elastomer Interactions. 2. Cure Behaviors and Mechanical Interfacial Properties of Carbon Black/Rubber Composites (충전재-탄성체 상호작용. 2. 카본블랙/고무 복합재료의 경화 거동 및 기계적 계면 물성)

  • Kim, Jeong-Soon;Park, Soo-Jin
    • Elastomers and Composites
    • /
    • v.35 no.2
    • /
    • pp.122-131
    • /
    • 2000
  • In this work, the effect of chemical surface treatments on morphology of carbon blacks was investigated in terms of cure behavior and tearing energy ($G_T$) of carbon blacks/rubber composites. As experimental results, the polar or nonpolar chemical treatment led to a significant physical change of carbon black morphology. The cure activation energies (Ea) and frequency factor (A) obtained from Kissinger equation decreased with improving the dispersion of carbon flacks, resulting in high reactivity. However, a significant advantage of carbon black/rubber composites is gained by carbon blacks treated in basic (BCB) or nonpolar (NCB) chemical solution, resulting in increasing the tearing energy. These results could be explained by changes of dispersion, agglomerate, surface functional group, void volume, and cross-linking density of carbon black/rubber composites.

  • PDF

Catalytic Performance of Ionic Liquids in the Synthesis of Glycerol Carbonate from Glycerol and Urea (글리세롤과 요소로부터 글리세롤카보네이트 합성에서 이온성액체의 촉매 특성)

  • Kim, Dong-Woo;Park, Kyung-Ah;Kim, Min-Ji;Park, Dae-Won
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.347-351
    • /
    • 2013
  • The preparation of glycerol carbonate (GC) from urea through carbonylation with renewable glycerol was investigated by using ionic liquid catalysts. It was found that quaternary ammonium salt and imidazolium salt ionic liquids with a shorter alkyl chain length and higher nucleophilic anion showed better catalytic performance. The effects of reaction temperature, reaction time and degree of vacuum on the reactivity of TBAC catalyst ware discussed. Zinc chloride ($ZnCl_2$) was used as co-catalyst with the ionic liquid catalyst. The mixed catalyst showed a synergy effect on the glycerol conversion and GC yield probably due to the acid-base properties of the catalysts.

Pretreatment for Improving Selective Hydrogenation Reaction of α, β-Unsaturated Aldehydes (α, β-불포화 알데히드의 선택적 수소화 반응성 향상을 위한 전처리 방법)

  • Kook-Seung Shin;Mi-Sun Cha;Chang-Soo Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.168-174
    • /
    • 2023
  • In commercial production processes of methyl methacrylate, there is a methacryl aldehyde as an intermediate or impurities. The existence of impurities is critical factor because of significant decrease of the conversion rate and selectivity of the entire chemical reaction. This study found that an acid was the main cause of the decrease in reactivity among various impurities because an acid rapidly lowers the activity of a catalyst and promotes a side reaction, the hetero Diels-Alder reaction. Therefore, the pretreatment methods with the removal of acid were comparatively evaluated by the selective hydrogenation reaction of the carbonyl group of the reactants. Based on several experimental conditions, we believe that proposed effective pretreatment improves productivity with appropriate economical process.