• 제목/요약/키워드: chemical reaction.

검색결과 9,386건 처리시간 0.036초

Kinetics and Thermodynamic Studies on the Reaction of Cysteine with Cinnamaldehyde

  • Kim, Tae-Rin;Yun, Se-Joon;Park, Byung-Bin
    • Bulletin of the Korean Chemical Society
    • /
    • 제7권1호
    • /
    • pp.25-29
    • /
    • 1986
  • The reaction of cysteine with cinnamaldehyde have been studied kinetically and thermodynamically. It was found that the reaction proceeds in two steps; formation of the monoadduct by a Michael type addition followed by the nucleophilic attack of the second cysteine to the carbonyl carbon of the monoadduct to afford the thiazolidine derivative. A reaction profile for the reaction of cysteine with cinnamaldehyde was constructed based on the thermodynamic parameters analyzed for the forward and the reverse reactions. It was assumed that the second step of this reaction accompanies an intermediate, a Schiff base.

Resol형 페놀수지의 합성과 반응특성 (Synthesis of Resol Type Phenol Resins and Their Reaction Properties)

  • 김동권;조지은;김정훈;박인준;이수복
    • 공업화학
    • /
    • 제16권2호
    • /
    • pp.288-291
    • /
    • 2005
  • Resol형 페놀수지(phenol-formaldehyde (PF) resin)는 페놀(phenol: P)에 포름알데히드(formaldehyde: F)를 첨가하여 반응시키는 부가반응과 물을 제거하는 축합반응에 의해 합성된다. 본 연구에서는 부가반응 반응변수인 F/P몰비, 촉매의 농도, 반응온도 및 반응시간 등의 영향에 관하여 연구하였다. 또한 반응시간의 조절에 따른 합성된 페놀수지의 분자량과 점도에 미치는 영향을 조사하였다. 실험결과, 부가반응에서 촉매농도와 반응온도가 높아질수록 반응시간은 크게 감소되는 경향을 나타내었다. 또한 축합반응에서 페놀수지의 점도는 반응시간이 증가할수록 1500cps에서 9000 cps까지 증가하였고, 분자량은 500~1100 g/mol 범위의 저 분자량을 나타내었다.

Curing Kinetics of the No-Flow Underfill Encapsulant

  • Jung, Hye-Wook;Han, Sang-Gyun;Kim, Min-Young;Kim, Won-Ho
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2001년도 추계 기술심포지움
    • /
    • pp.134-137
    • /
    • 2001
  • The cure kinetics of a cycloalipatic epoxy / anhydride / Co(II) system for a no-flow underfill encapsulant, has been studied by using a differential scanning calorimetry(DSC) under isothermal and dynamic conditions over the temperature range of $160^{\circ}C ~220^{\circ}C$. The kinetic analysis was carried out by fitting dynamic/isothermal heating experimental data to the kinetic expressions to determine the reaction parameters, such as order of reaction and reaction constants. Diffusion-controlled reaction has been observed as the cure conversion increases and successfully analyzed by incorporating the diffusion control term into the rate equation. The prediction of reaction rates by the model equation corresponded well to experimental data at all temperature.

  • PDF

Optimal Reaction Conditions for Minimization of Energy and Byproducts in a Poly(ethylene terephthalate) Process

  • Ha, Kyoung-Su;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.248-251
    • /
    • 1999
  • The optimal reaction conditions are determined for a PET process, which consists of transesteriflcation, prepolymerization and polycondensation reactors in series. Based on the simulation results of the reactor system, we scrutinize the cause and effect between the reaction conditions and the final properties of the polymer product. We then select the process variables with significant influence on the properties of polymer as control variables and calculate the optimal reaction conditions by iterative dynamic programming (IDP) algorithm with constraints. A new reaction scheme incorporating reactions for by-products as well as three main reactions is considered in the constrained IDP method.

  • PDF

Silane Coupling제(劑)와 고분자탄성체간(高分予彈性體間)의 용액반응(溶液反應)에 대한 속도론적(速度論的) 해석(解析) (Kinetic Analysis of Solution Reaction between CR and Silane Coupling Agents)

  • 박영수;윤정식;유종선;백남철
    • Elastomers and Composites
    • /
    • 제25권2호
    • /
    • pp.112-116
    • /
    • 1990
  • In this study, as one way of developing the new cross-linking method that is curable in water, kinetic analysis of solution reaction between CR and silane coupling agents was attemped. First, CR was reacted with silane coupling agents in solution state. According to the time, reaction quantity was pursued by gas chromatography. Also, reaction rate coefficient and activation energy were calculated from the reaction quantity. Silane coupling agents which were used in this study were MPS, CPS and VES.

  • PDF

에틸렌글리콜을 이용한 PET 해중합 특성 (Depolymerization of PET by Ethylene Glycol)

  • 황휘동;김보경;우대식;한명완
    • Korean Chemical Engineering Research
    • /
    • 제47권6호
    • /
    • pp.683-687
    • /
    • 2009
  • 본 연구에서는 촉매 존재 하에서 에틸렌글리콜(EG)를 이용하여 글리콜리시스를 통해 PET(Poly ethylene terephthalate)을 해중합하여 BHET(bis-hydroxyethyl terephthalate)를 얻기 위한 방법에 대하여 연구하였다. 촉매는 zinc acetate가 사용되었고, 생성물은 high performance liquid chromatography(HPLC)으로 분석하였다. 반응 시간, 반응 온도, EG양과 같은 조건들의 영향을 알아보았으며, 반응 속도식을 구하였다. 그 결과 반응 온도와 반응 시간이 증가함에 따라 BHET의 수율과 해중합 속도는 증가하였지만, 너무 높은 반응 온도 $250^{\circ}C$에서는 BHET가 중합반응을 일으켜 $230^{\circ}C$ 보다 수율이 낮게 나타났다. 1차 반응속도 모델을 가정하여 반응 활성화에너지를 구하였다. 얻어진 활성화 에너지는 $210^{\circ}C$ 이상과 $210^{\circ}C$ 이하에서 각각 37.8, 149.6 kJ/mol이었다. 이는 이 반응이 다단 연속 반응임을 보여준다. BHET의 최대 수율은 반응 온도 $230^{\circ}C$, 반응 시간 6시간 그리고, EG/PET의 비율이 4일 때 가장 높은 71%의 수율을 나타내었다.

PEMFC 고분자막 내구 평가를 위한 Fenton 반응에서 과산화수소 농도 변화에 관한 연구 (Variation of Hydrogen Peroxide Concentration during Fenton Reaction for Test the Membrane Durability of PEMFC)

  • 오소형;김정재;이대웅;박권필
    • Korean Chemical Engineering Research
    • /
    • 제56권3호
    • /
    • pp.315-319
    • /
    • 2018
  • 고분자전해질연료전지(PEMFC)의 고분자막 전기화학적 내구성을 셀 밖에서 평가하는 방법으로 펜톤(Fenton)반응이 많이 이용된다. 본 연구에서는 펜톤 반응에 영향을 주는 인자를 파악하고자 하였다. 반응진행도를 파악하기 위해 펜톤 반응에서는 생성물로서 라디칼을 분석해야 하는데, 라디칼을 분석하기 어려워 반응물인 과산화수소 농도를 분석해 반응진행도를 측정하였다. 온도에 따른 과산화수소 변화속도를 측정해 활성화 에너지를 계산한 결과 180분에서 24.9 kJ/mol 이었다. 펜톤반응 속도는 철이온 농도에 많은 영향을 받았다. $80^{\circ}C$, 200 rpm, $Fe^{2+}$ 80 ppm 조건에서는 1시간동안에도 과산화수소 농도가 20%이상 처음과 차이가 나므로 용액교체를 자주 하는 것이 막열화 속도를 증가시킴을 보였다.

메탄-공기 대향류확산화염에서 $CO_2$$H_2O$의 첨가가 화염구조와 NOx배출특성에 미치는 화학적 영향 (Chemical effects of added $CO_{2}$ and $H_{2}O$ to major flame structures and NOx emission characteristics in $CH_4$/Air Counterflow Diffusion Flames)

  • 황동진;박정;이경환;길상인
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 제26회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.129-136
    • /
    • 2003
  • Numerical study with momentum-balanced boundary conditions has been conducted to grasp chemical effects of added $CO_{2}$ and $H_{2}O$ to fuel- and oxidizer-sides on flame structure and NO emission behavior in $CH_{4}$/Air counterflow diffusion flames. The dilution with $H_{2}O$ results in significantly higher flame temperatures and NO emission, but dilution with $CO_{2}$ has much more chemical effects than that with $H_{2}O$. Maximum reaction rate of principal chain branching reaction due to chemical effects decreases with added $CO_{2}$. but increases with added $H_{2}O$. The NO emission behavior is closely related to the production rate of OH, CH and N. The OH radical production rate increases with added $H_{2}O$ but those of CH, N decrease. On the other hand the production rates of OR CH and N decrease with added $CO_{2}$. It is found that NO emission behavior is considerably affected by chemical effects of added $CO_{2}$ and $H_{2}O$.

  • PDF

메탄의 균일 및 접촉부분산화에 의한 메탄올 합성 (Homogeneous and Catalytic Methanol Synthesis by Partial Oxidation of Methane)

  • 함현식;최우진;황제영;안성환;김명수;박홍수
    • 한국응용과학기술학회지
    • /
    • 제22권1호
    • /
    • pp.56-61
    • /
    • 2005
  • Methanol was synthesized by homogeneous and catalytic reactions of partial oxidation of methane. The effect of pressure, temperature and oxygen concentration on methanol synthesis was investigated. The catalyst used was Bi-Cs-Mg-Cu-Mo mixed oxide. The partial oxidation reaction was carried out in a fixed bed reactor at 20${\sim}$46 bar and $450{\sim}480^{\circ}C$ and oxygen concentration of 5.3${\sim}$7.7mol%. The results were compared with results of homogeneous reaction performed at the same conditions. Methane conversions of the homogeneous and catalytic reactions increased with temperature. Methanol selectivity of the homogeneous reaction decreased with increasing temperature. However, the methanol selectivity of catalytic reaction increased with temperature. For both homogeneous and catalytic reactions, the methane conversions were around 5%. This may be due to the low oxygen concentration. Methanol selectivity of the catalytic reaction was higher than that of homogeneous one.

산소부화화염내 CO2의 열 및 화학적 효과에 대한 연구 (Investigation on Thermal and Chemical Effects of CO2 in Oxygen Enriched Flame)

  • 금성민;이창언;한지웅
    • 대한기계학회논문집B
    • /
    • 제29권5호
    • /
    • pp.617-624
    • /
    • 2005
  • An analysis of the effects of $CO_{2}$ on fundamental combustion characteristics was performed in Oxygen enriched condition by comparing the laminar burning velocities, flame structures, fuel oxidation paths. Fictitious $CO_{2}$ was introduced to discriminate the chemical reaction effects of $CO_{2}$ from the thermal effects. PREMIX code was utilized to evaluate the laminar burning velocities. OPPDIF code was utilized to investigate the flame structure and fuel oxidation path variation. The contributions of thermal effects on laminar burning velocities are dominant at lowly oxygen-enriched condition but those of chemical reaction effects become dominant at highly oxygen-enriched condition. Chemical reaction effects caused the additional flame temperature decrease besides thermal effects and oxygen-leakage increase in non-premixed flame. Specific fuel oxidation path and CO production path is enhanced in spite of overall decrement of fuel consumption rate by chemical reaction effects of$CO_{2}$.