• Title/Summary/Keyword: chemical pump

Search Result 195, Processing Time 0.026 seconds

Analysis of VOCs Produced from Incineration of Plastic Wastes Using a Small- Electric Furnace (소형전기로를 이용한 플라스틱류 소각시 발생하는 VOCs 농도분석)

  • Lee Byeong-Kyu;Kim Haengah
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.6
    • /
    • pp.759-771
    • /
    • 2004
  • This study analyzed concentrations of volatile organic compounds (VOCs) produced from incineration of plastic wastes at $600^{\circ}C$. The plastic wastes used in this study included polyethyleneterephthlate (PETE), high density polyethylene (HOPE), polyvinyl chloride (PVC), low density polyethylene (LOPE), polypropylene (PP), polystyrene (PS) and other. Plastic wastes were heated from room temperature upto $600^{\circ}C$ providing the compressed air inside of a small-scale electric furnace for 90 minutes and then they were oxidized (incinerated) for 60 minutes at $600^{\circ}C$ maintaining the same air supply. VOCs emitted from the incineration process were sampled using an air sampling pump and Tedlar air bags for 150 minutes and then the components and concentrations of the VOCs were analyzed by a GC-MS. The most prominent chemical structure of the VOCs obtained from the incineration process of the HOPE, LOPE and PP, which include ethylene groups in their main chains, was identified as aliphatic hydrocarbons such as 1-hexene. However, aromatics such as benzene were major chemical structure from the incineration of PETE, PVC and PS which include benzene rings in their main chains. This study estimated the total VOC production from the incineration of the plastic wastes based on the real plastic waste production and the emission factors. 64% and 27% of the total VOC emissions consisted of aliphatic hydrocarbons and aromatics, respectively, which have double bonds within their molecular structure and thus a high ground level ozone formation potential.

Heteroepitaxial Structure of ZnO Films Deposited on Graphene, $SiO_2$ and Si Substrates

  • Pak, Sang-Woo;Cho, Seong-Gook;Kim, Eun-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.309-309
    • /
    • 2012
  • Heteroepitaxial growth remains as one of the continuously growing interests, because the heterogeneous crystallization on different substrates is a common feature in the fabrication processes of many semiconductor materials and devices, such as molecular beam epitaxy, pulsed laser deposition, sputtering, chemical bath deposition, chemical vapor deposition, hydrothermal synthesis, vapor phase transport and so on [1,2]. By using the R.F. sputtering system, ZnO thin films were deposited on graphene 4 and 6 mono layers, which is grown on 400 nm and 600 nm $SiO_2$ substrates, respectively. The ZnO thin layer was deposited at various temperatures by using a ZnO target. In this experimental, the working power and pressure were $3{\times}10^{-3}$ Torr and 50 W, respectively. The base pressure of the chamber was kept at a pressure around $10^{-6}$ Torr by using a turbo molecular pump. The oxygen and argon gas flows were controlled around 5 and 10 sccm by using a mass flow controller system, respectively. The structural properties of the samples were analyzed by XRD measurement. The film surface and carrier concentration were analyzed by an atomic force microscope and Hall measurement system. The surface morphologies were observed using field emission scanning electron microscope (FE-SEM).

  • PDF

A Precipitation of Ammonium Uranyl Carbonate from Uranylnitrate Solution (UO$_2$(NO$_3$)$_2$ 용액으로부터 Ammonium Uranyl Carbonate 제조)

  • 김응호;김형수;이규암;유재형;최청송
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.6
    • /
    • pp.559-568
    • /
    • 1998
  • Studies of preparation condition and characteristics of AUC(ammonium uranyl carbonate) were carried out to optimize AUC process with different reactor sizes and precipitation methos. As results four types of precipitates with different chemical compositions and morphologies were obtained from the reaction of {{{{ {(NH }_{4 }) { }_{2 } {CO }_{3 } }} with {{{{ {UO }_{2 }( {NO }_{3 }) { }_{2 } }} solution. A phase diagram has been made and crystal structure and chemical composition of each phase have been characterized by using SEM X-ray IR and thermal analysis. It was found that ammonium uranyl carbonate {{{{ {(NH }_{4 }) { }_{4 } {UO }_{2 } {(CO }_{3 }) { }_{3 } }} with monoclinic crystal morphology could be syn-thesized when the mole ratio of in {{{{ {(NH }_{4 }) { }_{2 } {CO }_{3 }/ {UO }_{2 } {(NO }_{3 }) { }_{2 } }} in the solution was higher than 5 Also a mechanism and a precipitating condition on rounding of the AUC particle were examined in the course of the AUC pre-cipitation. The rounding of the AUC particle was possible only by external circulation using pump not by internal circulation using agitator.

  • PDF

Microfactory for Electro-Chemical Machining (마이크로 전기${\cdot}$화학 복합형상 제거시스템)

  • Lee H.W.;Kook K.H.;Kim K.W.;Kim T.G.;Ryu B.H.;Jung J.W.;Han M.S.;Jung Y.H.;Min B.K.;Lee S.J.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.389-394
    • /
    • 2005
  • Microfactory is effective method for machining micro size component. Electro-chemical machining can be more suitable to a microfactory than other machining methods in terms of maintaining high accuracy. Surface profile of EDM Machined component is predicted by micro EDM simulation using superpositioning spark crater. Planar motor and micro pump are developed to construct microfactory system.

  • PDF

Technique for Soil Solution Sampling Using Porous Ceramic Cups

  • Chung, Jong-Bae
    • Applied Biological Chemistry
    • /
    • v.41 no.8
    • /
    • pp.583-586
    • /
    • 1998
  • Porous ceramic cups are used for monitoring ion concentration in soil solutions in various time course and depth. A soil solution sampler was constructed in laboratory by inserting pliable perfluoroalkoxy(PFA) tubings into porous cup through holes in PVC rod segment which plugged top opening of the porous cup. The system was installed in drip irrigated soil in a vertical position, and nitrogen movement below the drip basin was monitored. To collect soil solution, vacuum in the cup was applied with a hand vacuum pump. The samples obtained were sufficient enough to run quantitative analyses for a number of chemicals. Nitrogen transformation and movement could be well defined, and the system seemed to be relevant to the other soil solution samplers in monitoring chemical movement in soil. Although this system has general deficiencies found in the other samplers using ceramic cup, it could be easily constructed at a low cost. Since the tubing was pliable, the cups could be installed in horizontal position, and this allows installations of the cups at more precise depth increments and also more precise samplings of soil solution at each depth.

  • PDF

A Study on the Manufacture of the Cu Powder from Electrochemical Recovery of Waste Rinse Water at the Cu Electroplating Process (동 도금 수세 폐수로부터 구리 분말 제조에 관한 연구)

  • 김영석;한성호
    • Journal of Surface Science and Engineering
    • /
    • v.36 no.2
    • /
    • pp.194-199
    • /
    • 2003
  • Polarization measurements were peformed to investigate the electrochemical behavior of copper ions and limiting current density in waste rinse water from copper electroplating processes. A newly designed cyclone type electrolyzer was tested to recover the copper powder. Synthetic solutions were prepared using analytical grade $CuSO_4$ to the desired waste water concentration and pH was adjusted with $H_2$$SO_4$. Electrowinning was peformed at room temperature and the solution was cycled with a pump. Results showed that more than 99 percent of Cu was recovered and the size of the recovered Cu powder ranges from 0.1 - $0.5\mu\textrm{m}$. The chemical composition of the Cu powder mainly consists of $Cu_2$O and Cu and can be easily reduced to pure Cu powder.

비친수성유기물질(HOC)로 오염된 토양의 정화를 위한 동전기-생물활성화공정의 개발

  • 양지원;김상준;박지연;이유진;기대정
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.326-329
    • /
    • 2003
  • When an electrokinetic process is applied to a HOC-contaminated soil, hybrid types combined with soil flushing, chemical oxidation, and bioremediation are generally used. Especially when the electrokinetic process is combined with bioremediation, the hybrid technology can solve several limits of bioremediation such as low microbial mobility, low soil temperature, and shortage of nutrients in subsurface circumstance. Because microbial surface is charged negatively, the microorganism moves from cathode to anode under electrical field. In this study, mixed culture mainly-consisted by Pseudomonas sp. was applied to remediate pentadecane-contaminated kaolinite with particle size less than 300${\mu}{\textrm}{m}$. This remediation system was named ‘electrokinetic bioaugmentation’ and consisted of model aquifer, electrode reservoirs, bioreactor, power supply, and pump. The mixed culture above 0.5 of optical density in bioreactor was supplied to two reservoirs and penetrated soil when the electric current was applied. To enhance the removal efficiency, the optimal medium composition, electric current, and voltage were investigated.

  • PDF

Measurement Technique of Ozone Density by Using UV Sensor System

  • Trung, Nguyen Huu;Van Men, Le;Van Hieu, Nguyen
    • Journal of IKEEE
    • /
    • v.19 no.1
    • /
    • pp.80-86
    • /
    • 2015
  • There are many studies and products using a test paper impregnated with chemical solution can react with ozone. The color of a test paper can indicate the concentration of ozone. The purpose of this research is to design and manufacture a system using ultraviolet light source to measure the ozone density. This new technique is based on the characteristic of decomposition from ozone into oxygen under ultraviolet light. We used two sources of ultraviolet light including UV lamp and UVLED to determine the decomposition of ozone. This system is built with the electronic components, sensors and sealed pump tube to measure the ozone density in units of $g/cm^3$,ppm,ppb. In this paper,, we present some initial results of measuring the ozone density from ozone generator after completing inspection for safety.

A Study on the Production of Hydrogen by 2-Propanol Dehydrogenation (2-프로파놀의 탈수소화에 의한 수소제조 연구)

  • Sim, Kyu-Sung;Kim, Jong-Won;Kim, Youn-Soon;Park, Ki-Bae
    • Journal of Hydrogen and New Energy
    • /
    • v.6 no.1
    • /
    • pp.11-16
    • /
    • 1995
  • Chemical heat pump is one of the energy conversion technologies, which enables to use waste heat as a source of high grade heat. In 2-propanol/acetone system, the dehydrogenation of 2-propanol is an endothermic(heat absorption) reaction, and can be used to generate hydrogen because 2-propanol can be converted to acetone and hydrogen at low temperature(about $8^{\circ}C$) using catalyst. For the dehydrogenation of 2-propanol 5% Ru catalyst based on activated carbon is the best one at the reaction temparature of $83^{\circ}C$.

  • PDF

MIXING PROCESS FLOW ANALYSIS OF PDM AND HYDRAULIC MIXING BASIN SYSTEM USING CFD (CFD를 이용한 펌프확산 및 수리낙차 방식의 혼화공정 흐름 분석)

  • Lee, S.W.;Chang, S.M.;Cho, Y.
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • The mixing of water and chemicals is an important process in the water purification plant. In this paper, we compare PDM(pump diffusion mixer) and hydraulic mixer at the basin in the mixing process. The proper flow rates are predicted and compared in both mixers using CFD technique. As a result, the flow rate of purifier chemical liquid should be 5% of that of water for the optimal performance of mixing process. The characteristics of the two mixing methods are compared with each other for strong and weak points on the operation of the purification system, discussed in the view point of CFD simulations.