• Title/Summary/Keyword: chemical proteomics

Search Result 68, Processing Time 0.027 seconds

Human ChlR1 Stimulates Endonuclease Activity of hFen1 Independently of ATPase Activity

  • Kim, Do-Hyung;Kim, Jeong-Hoon;Park, Byoung Chul;Lee, Do Hee;Cho, Sayeon;Park, Sung Goo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.3005-3008
    • /
    • 2014
  • Human ChlR1 protein (hChlR1), a member of the cohesion establishment factor family, plays an important role in the segregation of sister chromatids for maintenance of genome integrity. We previously reported that hChlR1 interacts with hFen1 and stimulates its nuclease activity on the flap-structured DNA substrate covered with RPA. To elucidate the relationship between hChlR1 and Okazaki fragment processing, the effect of hChlR1 on in vitro nuclease activities of hFen1 and hDna2 was examined. Independent of ATPase activity, hChlR1 stimulated endonuclease activity of hFen1 but not that of hDna2. Our findings suggest that the acceleration of Okazaki fragment processing near cohesions may aid in reducing the size of the replication machinery, thereby facilitating its entry through the cohesin ring.

Identification of Novel Target Proteins of Cyclic GMP Signaling Pathways Using Chemical Proteomics

  • Kim, Eui-Kyung;Park, Ji-Man
    • BMB Reports
    • /
    • v.36 no.3
    • /
    • pp.299-304
    • /
    • 2003
  • For deciphering the cyclic guanosine monophosphate (cGMP) signaling pathway, we employed chemical proteomics to identify the novel target molecules of cGMP. We used cGMP that was immobilized onto agarose beads with linkers directed at three different positions of cGMP. We performed a pull-down assay using the beads as baits on tissue lysates and identified 9 proteins by MALDI-TOF (Matrix-Assisted Laser Desorption/Ionization Time-of-Flight) mass spectrometry. Some of the identified proteins were previously known cGMP targets, including cGMP-dependent protein kinase and cGMP-stimulated phosphodiesterase. Surprisingly, some of the co-precipitated proteins were never formerly reported to associate with the cGMP signaling pathway. The competition binding assays showed that the interactions are not by nonspecific binding to either the linker or bead itself, but by specific binding to cGMP. Furthermore, we observed that the interactions are highly specific to cGMP against other nucleotides, such as cyclic adenosine monophosphate (cAMP) and 5'-GMP, which are structurally similar to cGMP. As one of the identified targets, MAPK1 was confirmed by immunoblotting with an anti-MAPK1 antibody. For further proof, we observed that the membrane-permeable cGMP (8-bromo cyclic GMP) stimulated mitogen-activated protein kinase 1 signaling in the treated cells. Our present study suggests that chemical proteomics can be a very useful and powerful technique for identifying the target proteins of small bioactive molecules.

Recent advances in microfluidic technologies for biochemistry and molecular biology

  • Cho, Soong-Won;Kang, Dong-Ku;Choo, Jae-Bum;Demllo, Andrew J.;Chang, Soo-Ik
    • BMB Reports
    • /
    • v.44 no.11
    • /
    • pp.705-712
    • /
    • 2011
  • Advances in the fields of proteomics and genomics have necessitated the development of high-throughput screening methods (HTS) for the systematic transformation of large amounts of biological/chemical data into an organized database of knowledge. Microfluidic systems are ideally suited for high-throughput biochemical experimentation since they offer high analytical throughput, consume minute quantities of expensive biological reagents, exhibit superior sensitivity and functionality compared to traditional micro-array techniques and can be integrated within complex experimental work flows. A range of basic biochemical and molecular biological operations have been transferred to chip-based microfluidic formats over the last decade, including gene sequencing, emulsion PCR, immunoassays, electrophoresis, cell-based assays, expression cloning and macromolecule blotting. In this review, we highlight some of the recent advances in the application of microfluidics to biochemistry and molecular biology.

A Conserved Mechanism for Binding of p53 DNA-Binding Domain and Anti-Apoptotic Bcl-2 Family Proteins

  • Lee, Dong-Hwa;Ha, Ji-Hyang;Kim, Yul;Jang, Mi;Park, Sung Jean;Yoon, Ho Sup;Kim, Eun-Hee;Bae, Kwang-Hee;Park, Byoung Chul;Park, Sung Goo;Yi, Gwan-Su;Chi, Seung-Wook
    • Molecules and Cells
    • /
    • v.37 no.3
    • /
    • pp.264-269
    • /
    • 2014
  • The molecular interaction between tumor suppressor p53 and the anti-apoptotic Bcl-2 family proteins plays an essential role in the transcription-independent apoptotic pathway of p53. In this study, we investigated the binding of p53 DNA-binding domain (p53DBD) with the anti-apoptotic Bcl-2 family proteins, Bcl-w, Mcl-1, and Bcl-2, using GST pull-down assay and NMR spectroscopy. The GST pull-down assays and NMR experiments demonstrated the direct binding of the p53DBD with Bcl-w, Mcl-1, and Bcl-2. Further, NMR chemical shift perturbation data showed that Bcl-w and Mcl-1 bind to the positively charged DNA-binding surface of p53DBD. Noticeably, the refined structural models of the complexes between p53DBD and Bcl-w, Mcl-1, and Bcl-2 showed that the binding mode of p53DBD is highly conserved among the anti-apoptotic Bcl-2 family proteins. Furthermore, the chemical shift perturbations on Bcl-w, Mcl-1, and Bcl-2 induced by p53DBD binding occurred not only at the p53DBD-binding acidic region but also at the BH3 peptide-binding pocket, which suggests an allosteric conformational change similar to that observed in Bcl-$X_L$. Taken altogether, our results revealed a structural basis for a conserved binding mechanism between p53DBD and the anti-apoptotic Bcl-2 family proteins, which shed light on to the molecular understanding of the transcription-independent apoptosis pathway of p53.