• Title/Summary/Keyword: chemical process safety

Search Result 512, Processing Time 0.029 seconds

A Study on Total Hazard Level Algorithm Development for Hazardous Chemical Substances (유해화학물질의 종합위해등급 알고리즘 개발에 관한 연구)

  • 고재선;김광일;정상태
    • Fire Science and Engineering
    • /
    • v.14 no.4
    • /
    • pp.7-16
    • /
    • 2000
  • In the study, three criteria(toxicity, fire & explosion, environment) and damage prediction method for each case was set up, and all these criteria were applied to the subject substance that was selected as hazardous level by integrating all criteria through Algorithm. Particularly, the environment criterion is a comprehensive concept, environment index modeling by combining USCG(United State Coast Guard) & MSDS(Material Safety Data Sheet) environment criteria classifications and the environment part of MFPA's health hazardousnes(Nh). And for damage prediction method of each criterion were adopted and they were applied to hazardous chemical substances in use or stored by chemical substance related enterprises located in each region that made possible to set up total hazard level of used substances(inflammability, poisonousness and counteraction on a unit substance, and hazard level & display modeling on environment) & damage prediction in case of accident & solidity setup(CPQRA: Chemical Process Quantitative Risk Assessment, IAEA: International Atomic Energy Agency, VZ eq: Vulnerable Zone) risk counter. Thus it is deemed that it can be applied to toxic substance leakage that can happen during any chemical processing & storage, application as a tool for prior safety evaluation through potential dangerousness computation of fire & explosion.

  • PDF

Enhancement of Occupational Exposure Assessment in Korea through the Evaluation of ECETOC TRA according to PROCs (공정 범주에 따른 ECETOC TRA 모델 평가로부터 도출한 한국 작업장 노출 평가 개선 방안)

  • Kim, Ki-Eun;Kim, Jongwoon;Jeon, Hyunpyo;Kim, Sanghun;Cheong, Yeonseung
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.2
    • /
    • pp.173-185
    • /
    • 2019
  • Objectives: The objectives of this study are to evaluate the accuracy and precision of exposure model ECETOC TRA v.3.1 by comparing model predictions with repeated exposure measurements in Korean workplaces and to investigate the applicability of ECETOC TRA to Korean workplace exposure assessment in K-REACH. Methods: Measured values and work conditions for 14 kinds of chemicals collected from exposure field surveys conducted at 10 companies in Korea were utilized for this study. All possible process categories (PROCs) considered to be relevant to each work process classification were selected and applied to ECETOC TRA as major determining parameters. In order to quantify the accuracy of the model, the lack of agreement (bias, relative bias, precision) was calculated and the risk ratios for each exposure situation between estimated and measured were also compared. Results: The estimated values varied between five and 25 times according to the PROCs for all exposure situations (ESs) based on tasks/chemicals. The results showed that most of the estimated values were below the measured values, and just 13 of 53 tasks were above the measured values. The overall bias and precision were $-2.91{\pm}1.62$ with ECETOC TRA, and we found that ECETOC TRA showed a low level of conservatism when applied to Korean workplaces, similar to previous studies. Conclusions: This study demonstrates that the existed PROC codes have limitations in fully covering various ESs in Korea. In order to improve the applicability of ECETOC TRA in K-REACH, the addition of new PROCs for Korean industries are necessary.

A Feasibility Study on the Mixed Refrigerant Composition in the Rankine Cycle Empowered by Cold Energy (냉열을 이용한 랭킨 사이클 방식의 발전시스템에서 혼합냉매유체 조성비의 적용한계 분석)

  • Jeong, Moon;Cho, Eunbi;Hwang, Inju;Kang, Choonhyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.3
    • /
    • pp.14-18
    • /
    • 2016
  • The power generation system using cold energy, which evolves in a large amount during the vaporization process of the liquefied natural gas, was designed in favor of the Rankine cycle with a mixed refrigerant as the working fluid. In this study it is intended to identify the allowable limits of the working fluid composition in respect of equipment safety in the Rankine cycle-type power generation system driven by the cold energy. The thermodynamic properties of the working fluid, which is a hydrocarbon mixture, were calculated with the Peng-Robinson model. In the steady state simulation of the power generation system by using a commercial tool Aspen HYSYS, the feed conditions of LNG Test Bed Train No.1 along with some necessary assumptions were incorporated. The results indicated that deterioration of the mechanical performance of the equipment as well as its safety would be brought about if contents of $C_2H_6$ and $C_3H_8$ in the mixture become, respectively, too high or too low.

A Survey and Studies on the Residual Content of Dimethylformamide and its Reduction in Polyurethane-Based Consumer Products (폴리우레탄 기반 소비자 제품의 디메틸포름아미드 잔류량과 이의 저감화를 위한 조사 및 연구)

  • Park, Yong Gi;Ji, Wonha;Han, Kyeong Seok;Jee, Min Ho
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.4
    • /
    • pp.769-780
    • /
    • 2017
  • Purpose: The aim of this study is to conduct a survey of dimethylformamide(DMF) content in polyurethane(PU)-based consumer products and provide the information for the PU manufacturer and company to prepare a countermeasure for improving the quality competitiveness. Methods: This study selected PU-based consumer products(toddler shoes, children's bag, children's play mat, safety gloves), which is closely used in everyday life, and analyzed the residual DMF content in the consumer products. Results: In this study, it was confirmed that the average DMF content of toddler shoes, children's bag, children's play mat and safety gloves are 38 ppm, 119 ppm, 396 ppm and 826 ppm, respectively. In addition, most of the samples were found to meet the internationally accepted standard of 1,000 ppm and the DMF contents were reduced from at least 63 % to 85 % with a single washing process. Conclusion: The domestic PU manufacturers should seek ways to reduce the DMF through their production facility applications and introducing new materials such as water-soluble PU, and preparing the process development for their quality competitiveness.

A Study on Explosive Limits of Flammable Materials - Explosive Limits of Ternary System by Means of Solution Thermodynamics and MRSM Model - (가연성물질의 폭발한계에 관한 연구 - 용액열역학 및 MRSM 모델에 의한 3성분계 폭발한계 -)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.91-97
    • /
    • 2005
  • The research on the explosive limits is one of fundamental fields of combustion process, and information on the explosive limits of mixture of fuel and oxidant, with or without additives, is very important for the prevention in industrial fire and explosion accidents. Explosive limits of all compounds and solvent mixtures can be calculated with the appropriate use of the fundamental laws of Raoult, Batten, Le Chatelier and MRSM(modified response surface methodology) model. In this study, the reference values of lower explosive limits(LEL) of the ethanol+toluene+ethylacetate system were compared with the calculated values by using the solution thermodynamics and the MRSM model, respectively. The values calculated by the proposed equations were a good agreement with literature data within a few percent. By means of this methodology, it is possible to evaluate reliability of experimental data of the lower explosive limits of the flammable mixtures. Also, from given results, it is possible to predict explosive limits of the other flammable liquid mixtures used in the chemical process by the use of the proposed equations.

Measurement and Prediction of Combustion Properties of n-Phenol (페놀의 연소특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Korean Journal of Hazardous Materials
    • /
    • v.6 no.2
    • /
    • pp.23-29
    • /
    • 2018
  • The fire and explosion properties necessary for waste, safe storage, transport, process design and operation of handling flammable substances are lower explosion limits(LEL), upper explosion limits(UEL), flash point, AIT( minimum autoignition temperature or spontaneous ignition temperature), fire point etc., An accurate knowledge of the combustion properties is important in developing appropriate prevention and control measures fire and explosion protection in chemical plants. In order to know the accuracy of data in MSDSs(material safety data sheets), the flash point of phenol was measured by Setaflash, Pensky-Martens, Tag, and Cleveland testers. And the AIT of phenol was measured by ASTM 659E apparatus. The explosion limits of phenol was investigated in the reference data. The flash point of phenol by using Setaflash and Pensky-Martens closed-cup testers were experimented at $75^{\circ}C$ and $81^{\circ}C$, respectively. The flash points of phenol by Tag and Cleveland open cup testers were experimented at $82^{\circ}C$ and $89^{\circ}C$, respectively. The AIT of phenol was experimented at $589^{\circ}C$. The LEL and UEL calculated by using Setaflash lower and upper flash point value were calculated as 1.36vol% and 8.67vol%, respectively. By using the relationship between the spontaneous ignition temperature and the ignition delay time proposed, it is possible to predict the ignition delay time at different temperatures in the handling process of phenol.

Exposure Characteristics of Chemical Hazards in Metalworking Operations using an Employee Exposure Assessment Database (작업환경측정 자료를 이용한 CNC공정의 유해물질 노출 특성)

  • Lee, Jaehwan;Park, Donguk;Ha, Kwonchul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.2
    • /
    • pp.230-239
    • /
    • 2018
  • Objective: The purpose of this study is to identify the kinds and exposure levels of health hazards in the metalworking process in relation to acute poisoning accidents caused by methanol in 2016. Methods: The number of industries, workplaces, exposed workers, regional distribution, and exposure level of health hazards in metalworking process were investigated based on employee exposure assessment database provided by KOSHA (the Korea Occupational Safety and Health Agency), which was collected from workplace hazard evaluation programs in Korea. Exposure metrics for methanol were assessed by RCR (risk characterization ratio). Results: The numbers of processes, workplaces, and exposed workers of metalworking, which include CNC (computer numerical control) were 25, 14,405, and 169,102 respectively. The numbers of samples of chemical hazards including methanol were 91,325, and it was found that workers in metalworking were exposed to 249 kinds of chemical hazards. There were 16 kinds of special controlled substances including beryllium. It is estimated that the number of workplaces involving CNC process was 2,537, and the number of exposed workers was 27,976. In CNC process, the total number of workplaces handling methanol was 36, and 298 workers were estimated to be exposed. There was no exceeded that surpassed the OEL and 49% of samples were below the limit of detection. Methanol exposure concentrations in Gyeonggido Province were statistically significantly higher than in other areas (p <0.0001). Conclusions: In the metalworking process including CNC, there is exposure to a wide variety of health hazards. There was no sample exceeding the OEL for methanol. Therefore, it is necessary to recognize the limits of the employee exposure assessment system and urgently improve measures to prevent the occurrence of events like methanol poisoning.

A Study on Water-Proof Characteristics of a Stainless Steel Mesh by Electrochemical Etching Process (전기화학 에칭 공정을 이용한 스테인리스 스틸 메쉬의 방수 특성 연구)

  • Lee, Chan;Kim, Ji Min;Kim, Hyungmo
    • Tribology and Lubricants
    • /
    • v.37 no.5
    • /
    • pp.189-194
    • /
    • 2021
  • A straightforward, yet effective surface modification method of stainless steel mesh and its interesting anti-wetting characteristics are reported in this study. The stainless steel mesh is electrochemically etched, and the specimen has both micro and nano-scale structures on its surface. This process transforms the two types of mesh specimens known as the regular and dense specimens into hydrophobic specimens without applying any hydrophobic chemical coating process. The fundamental wettability of the modified mesh is analyzed through a dedicatedly designed experiment to investigate the waterproof characteristics, for instance, the penetration threshold. The waterproof characteristics are evaluated in a manner that the modified mesh resists as high as approximately 2.7 times the pressure compared with the bare mesh, i.e., the non-modified mesh. The results show that the penetration threshold depends primarily on the advancing contact angles, and the penetration stop behaviors are affected by the contact angle hysteresis on the surfaces. The findings further confirm that the inexpensive waterproof meshes created using the proposed straightforward electrochemical etching process are effective and can be adapted along with appropriate designs for various practical applications, such as underwater devices, passive valves, and transducers. In general, , additional chemical coatings are applied using hydrophobic materials on the surfaces for the applications that require water-repelling capabilities. Although these chemical coatings can often cause aging, the process proposed in this study is not only cost-effective, but also durable implying that it does not lose its waterproof properties over time.

Simple and Efficient Synthesis of Iron Oxide-Coated Silica Gel Adsorbents for Arsenic Removal: Adsorption Isotherms and Kinetic Study

  • Arifin, Eric;Cha, Jinmyung;Lee, Jin-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2358-2366
    • /
    • 2013
  • Iron oxide (ferrihydrite, hematite, and magnetite) coated silica gels were prepared using a low-cost, easily-scalable and straightforward method as the adsorbent material for arsenic removal application. Adsorption of the anionic form of arsenic oxyacids, arsenite ($AsO^{2-}$) and arsenate ($AsO{_4}^{3-}$), onto hematite coated silica gel was fitted against non-linear 3-parameter-model Sips isotherm and 2-parameter-model Langmuir and Freundlich isotherm. Adsorption kinetics of arsenic could be well described by pseudo-second-order kinetic model and value of adsorption energy derived from non-linear Dubinin-Radushkevich isotherm suggests chemical adsorption. Although arsenic adsorption process was not affected by the presence of sulfate, chloride, and nitrate anions, as expected, bicarbonate and silicate gave moderate negative effects while the presence of phosphate anions significantly inhibited adsorption process of both arsenite and arsenate. When the actual efficiency to remove arsenic was tested against 1 L of artificial arsenic-contaminated groundwater (0.6 mg/L) in the presence competing anions, the reasonable amount (20 g) of hematite coated silica gel could reduce arsenic concentration to below the WHO permissible safety limit of drinking water of $10{\mu}g/L$ without adjusting pH and temperature, which would be highly advantageous for practical field application.

Uranium thermochemical cycle used for hydrogen production

  • Chen, Aimei;Liu, Chunxia;Liu, Yuxia;Zhang, Lan
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.214-220
    • /
    • 2019
  • Thermochemical cycles have been predominantly used for energy transformation from heat to stored chemical free energy in the form of hydrogen. The thermochemical cycle based on uranium (UTC), proposed by Oak Ridge National Laboratory, has been considered as a better alternative compared to other thermochemical cycles mainly due to its safety and high efficiency. UTC process includes three steps, in which only the first step is unique. Hydrogen production apparatus with hectogram reactants was designed in this study. The results showed that high yield hydrogen was obtained, which was determined by drainage method. The results also indicated that the chemical conversion rate of hydrogen production was in direct proportion to the mass of $Na_2CO_3$, while the solid product was $Na_2UO_4$, instead of $Na_2U_2O_7$. Nevertheless the thermochemical cycle used for hydrogen generation can be closed, and chemical compounds used in these processes can also be recycled. So the cycle with $Na_2UO_4$ as its first reaction product has an advantage over the proposed UTC process, attributed to the fast reaction rate and high hydrogen yield in the first reaction step.