• 제목/요약/키워드: chemical oxide

검색결과 3,459건 처리시간 0.033초

Chemically Modified Graphenes: Chemistry and Applications

  • Park, Sung-Jin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.8-8
    • /
    • 2011
  • During the last half decade, chemically modified graphene (CMG) has been studied in the wide range of applications, such as polymer composites, energy-related materials, sensors, 'paper'-like materials, field-effect transistors (FET), inks, actuators, and biomedical applications due to its excellent electrical, mechanical, and thermal properties. Chemical modification of graphene oxide, which is generated from graphite oxide, which is produced by simple oxidation of graphite, has been a promising route to achieve mass production of CMG platelets via their colloidal suspensions. Graphene oxide contains a range of reactive oxygen functional groups, which renders it a good candidate for use in the aforementioned applications (among others) through chemical functionalizations. In this presentation, I will discuss my recent research activities on the fundamental chemistry of graphite oxide, as well as novel applications based on CMGs. Topics will include the chemical structure of CMGs and colloidal suspensions of CMG platelets, as well as a wide variety of applications.

  • PDF

CMP 연마를 통한 STI에서 결함 감소 (A Study of Chemical Mechanical Polishing on Shallow Trench Isolation to Reduce Defect)

  • 백명기;김상용;김창일;장의구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.501-504
    • /
    • 1999
  • In the shallow trench isolation(STI) chemical mechanical polishing(CMP) process, the key issues are the optimized thickness control within- wafer-non-uniformity, and the possible defects such as nitride residue and pad oxide damage. These defects after STI CMP process were discussed to accomplish its optimum process condition. To understand its optimum process condition, overall STI related processes including reverse moat etch, trench etch, STI filling and STI CMP were discussed. It is represented that the nitride residue can be occurred in the condition of high post CMP thickness and low trench depth. In addition there are remaining oxide on the moat surface after reverse moat etch. It means that reverse moat etching process can be the main source of nitride residue. Pad oxide damage can be caused by over-polishing and high trench depth.

  • PDF

오존에 의한 전구체와 혼입제의 화학적 활성화 (Chemical activation of precursor and dopant by ozone)

  • 이상운;윤천호;박정일;박광자
    • 한국진공학회지
    • /
    • 제8권3A호
    • /
    • pp.201-206
    • /
    • 1999
  • Transparent and conduction tin oxide films have been deposited on glass substrates employing the low pressure chemical vapor deposition technique. Tetramethyltin, 1, 1, 1, 2-tetrafluoroethane, and pure oxygen or ozone-containing oxygen were used as the precursor, dopant and oxidant, respectively. In order to examine the role of ozone in the low pressure chemical vapor deposition of tin oxide films, deposition rate, and electrical and optical properties of tin oxide films deposited using ozone-containing oxygen were compared with those using pure oxygen. Tetramethyltin and 1, 1, 1, 2-tetrafluoroethane were chemically activated by thermally initiated decomposition of ozone. Using ozone-containing oxygen under otherwise identical deposition conditions, we succeeded in preparing tin oxide films f better quality at higher deposition rate.

  • PDF

마그네슘 금속으로부터의 산화마그네슘 나노와이어 제조 (Preparation of Magnesium Oxide Nanowires from a Magnesium Foil)

  • 이병건;최진섭
    • 공업화학
    • /
    • 제22권5호
    • /
    • pp.514-517
    • /
    • 2011
  • 본 실험에서는 옥살산과 알코올계 용매를 사용하여 마그네슘 호일의 화학적 식각에 의해서 마그네슘 옥살레이트(Magnesium oxalate) 나노구조를 제조하였다. 알코올계 용매 중 에탄올 용매에서 마그네슘 옥살레이트 나노와이어를 얻을 수 있었다. 시간에 따른 나노와이어의 형성 과정을 살펴보았고, FE-SEM을 통하여 형상을 살펴보았다. TGA 분석을 통하여 열처리 조건을 결정하였다. 열처리를 통하여 마그네슘 옥살레이트 나노와이어에서 산화마그네슘(MgO) 나노와이어로 전환시켰고, 이를 FE-SEM과 FT-IR을 통하여 확인하였다.

An Electron Microscopic Investigation of the Structure of Thin Film Tin Oxide Material

  • Jeon, Eok-Gui;Choy, Jin-Ho;Choi, Q.-won;Kim, Ha-Suck
    • Bulletin of the Korean Chemical Society
    • /
    • 제6권5호
    • /
    • pp.304-308
    • /
    • 1985
  • Morphological structure of tin oxide thin films was examined by transmission electron microscopy. TEM samples were prepared by chemical etching in hydrogen fluoride solution: firstly floating for 2-3 minutes in acid solution, then suspending on water found to be useful for the preparation of TEM samples. Electron micrographs showed the size of grains of the tin oxide crystal was dependent upon the temperature of the film preparation. Dopant concentration and heating time also influence the grain size. The resistivity of tin oxide material was explained by grain size and grain boundaries in a limited temperature and dopant concentration ranges.

Dissolution Characteristics of Copper Oxide in Gas-liquid Hybrid Atmospheric Pressure Plasma Reactor Using Organic Acid Solution

  • Kwon, Heoung Su;Lee, Won Gyu
    • 공업화학
    • /
    • 제33권2호
    • /
    • pp.229-233
    • /
    • 2022
  • In this study, a gas-liquid hybrid atmospheric pressure plasma reactor of the dielectric barrier discharge method was fabricated and characterized. The solubility of copper oxide in the organic acid solution was increased when argon having a larger atomic weight than helium was used during plasma discharge. There was no significant effect of mixing organic acid solutions under plasma discharge treatment on the variation of copper oxide's solubility. As the applied voltage for plasma discharge and the concentration of the organic acid solution increased, the dissolution and removal power of the copper oxide layer increased. Solubility of copper oxide was more affected by the concentration in organic acid solution rather than the variation of plasma applied voltage. The usefulness of hybrid plasma reactor for the surface cleaning process was confirmed.

Layered Nickel-Based Oxides on Partially Oxidized Metallic Copper Foils for Lithium Ion Batteries

  • Chung, Young-Hoon;Park, Sun-Ha;Kim, Hyun-Sik;Sung, Yung-Eun
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권4호
    • /
    • pp.204-210
    • /
    • 2011
  • Thin film electrodes have been intensively studied for active materials and current collectors to enhance the electrochemical performance. Here, porous structures of nickel-based oxide films, consisting of nickel oxide and copper (II) oxide, which was derived from the copper substrate during the annealing process, were deposited on metallic copper foils. The half-cell tests revealed excellent capacity retention after $80^{th}$ charge/discharge cycles. Some films showed an excess of the theoretical capacity of nickel oxides, which mainly originate from partially oxidized copper substrates during annealing. These results exhibit that both a preparation method of an active materials and partially oxidized current collectors could be important roles to apply thin film electrodes.

In situ Photoacoustic Study of Water Gas Shift Reaction over Magnetite/Chromium Oxide and Copper/Zinc Oxide Catalysts

  • Byun, In-Sik;Choi, Ok-Lim;Choi, Joong-Gill;Lee, Sung-Han
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권11호
    • /
    • pp.1513-1518
    • /
    • 2002
  • Kinetic studies on the water-gas shift reaction catalyzed by magnetite/chromium oxide and copper/zinc oxide were carried out by using an in situ photoacoustic spectroscopic technique. The reactions were performed in a closed-circulation reactor system using a differential photoacoustic cell at total pressure of 40 Torr in the temperature range of 100 to $350^{\circ}C.$ The CO2 photoacoustic signal varying with the concentration of CO2 during the catalytic reaction was recorded as a function of time. The time-resolved photoacoustic spectra obtained for the initial reaction stage provided precise data of CO2 formation rate. The apparent activation energies determined from the initial rates were 74.7 kJ/mol for the magnetite/chromium oxide catalyst and 50.9 kJ/mol for the copper/zinc oxide catalyst. To determine the reaction orders, partial pressures of CO(g) and H2O(g) in the reaction mixture were varied at a constant total pressure of 40 Torr with N2 buffer gas. For the magnetite/chromium oxide catalyst, the reaction orders with respect to CO and H2O were determined to be 0.93 and 0.18, respectively. For the copper/zinc oxide catalyst, the reaction orders with respect to CO and H2O were determined to be 0.79 and 0, respectively.

흙의 粒度分捕가 石灰混合土의 强度特性에 미치는 影響 (Effects of Grain Size Distribution in Soil on the Strength Characteristics of Lime-Soil Mixtures)

  • 조성정;강예묵
    • 한국농공학회지
    • /
    • 제27권2호
    • /
    • pp.57-71
    • /
    • 1985
  • The characteristics of compaction and unconfined compressive strength were investigated by mixing with lime to all soils adjusted by given percentages of two kinds of clays to sand to obtain the most effective distribution of grain size and the optimum lime content for soil stabilization. In addition, unconfined compressive strength and durability tested by adding of sodium metasilicate, sodium sulfate, sodium carbonate, sodium gydroxide and magnesium oxide to lime-soil mixture mixed with 8 percent lime to adjusted soil having the mixing percentage of 60 percent of cohesive black clay and 40 percent of sand by weight to get the effect and the optimum content of chemicals. The results obtained were as follows; 1.With the addition of more lime, the optimum moisture content was increased, and the maximum dry density was decreased, whereas the more the amount of clay and the less was the maximum drt density. 2. In the soil having more fine grain size the unconfined compressive strength was larger in the earlier stage of curing period, in accordance with the longer period, the mixing percentages of sand to clay showing the maximum unconfined compressive strength, on the basis of 28-day strength, were 60% : 40% (black clay) and 40% : 60% (brown clay) respectively. 3. The reason why the soil adjusted with black clay was remarkably bigger in the unconfined compressive strength than ones adjusted with brown clay for all specimen of lime-soil mixture was the difference in the kind of clay, the amount of chemical compositions the value of pH. Black clay was mainly composed of halloysite that reacted with lime satisfactorily, whereas the main composition of brown clay was kaolinite that was less effect in the enhance of unconfined compressive strength. Also the difference of unconfined compressive strength was because black clay was larger in the amount of composition of calcium oxide and magnesium oxide in the value of pH affecting directly on the unconfined compressive strength of lime-soil mixture than brown clay. 4. In the lime-soil mixture mixed with 8 percent of lime to soil that mixing percentage of sand to black clay was 60% : 40%, on the standard of 7-day strength, the effect of chemical was arranged in the order of magnesium oxide, sodium carbonate, sodium sulfate, sodium hydroxide and sodium metasilicate. 5. The optimum amount of chemical being applicable to the maximum unconfined compressive strength of lime-chemical-soil mixture was 1 percent by weight for air dry soil in the case of adding sodium carbonated and 0.75 percent on sodium hydroxide, the unconfined compressive strength was increased continuously with increase of the amount of chemical up to 2 percent of chemical content is the lime-chemical-soil mixture added sodium metasilicate, sodium sulfate and magnesium oxide. 6. It was considered that the chemical played and accelerant role of early revelation of strength because the rate of increase of unconfined compressive strength of all of lime-chemical-soil mixtures was largest on the 7-day cured specimen. 7. The effect of test on freezing and thawing after adding suitable amount of chemical on the lime-soil mixture mixed with 8 percent of lime to soil that mixing percentage of sand to black clay was 60% : 40% was arranged in the order of magnesium oxide, sodium carbonate, sodium sulfate, sodium metasilicate and sodium hydroxide.

  • PDF