• 제목/요약/키워드: chemical light

검색결과 2,467건 처리시간 0.039초

Interfacial Engineering of Polymer Light Emitting Diode

  • Chen, Show-An
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.165-167
    • /
    • 2007
  • The performance of polymer light emitting diode can be improved significantly by interfacial engineering on anode and/or cathode through adjusting the charge injection barriers for holes and electrons. Studies involve CFx and SAM modifications on ITO, thickness and delay time to baking of PEDOT:PSS, and electron injection/hole blocking layer.

  • PDF

The Effect of Three-Dimensional Morphology with Wet Chemical Etching in Solar Cells

  • Kim, Hyunyub;Park, Jangho;Kim, Hyunki;Kim, Joondong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.667-667
    • /
    • 2013
  • Optimizing morphology of the front surface with three dimensional structures (3D) in solar cell is essential element for not only effectivelight harvesting but also carrier collection and separation without the cost burden in process. We designed a three-dimensionally ordered front surface with wet chemical etching. Wet chemical etching is a proper way to have three dimensional structures. The method efficiently transmits the incident light at the front surface to a Si absorber and has competitive price in manufacturing when comparing with reactive ion etching (RIE) to have three dimensional structures. This indicates that optimized front surface with three dimensional structures by wet chemical etching will bring effective light management in solar cells.

  • PDF

Advanced Nano-Structured Materials for Photocatalytic Water Splitting

  • Chandrasekaran, Sundaram;Chung, Jin Suk;Kim, Eui Jung;Hur, Seung Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권1호
    • /
    • pp.1-12
    • /
    • 2016
  • The production of oxygen and hydrogen from solar water splitting has been considered to be an ultimate solution for energy and environmental issues, and over the past few years, nano-sized semiconducting metal oxides alone and with graphene have been shown to have great promise for use in photocatalytic water splitting. It is challenging to find ideal materials for photoelectrochemical water splitting, and these have limited commercial applicability due to critical factors, including their physico-chemical properties, the rate of charge-carrier recombination and limited light absorption. This review article discusses these main features, and recent research progress and major factors affect the performance of the water splitting reaction. The mechanism behind these interactions in transition metal oxides and graphene based nano-structured semiconductors upon illumination has been discussed in detail, and such characteristics are relevant to the design of materials with a superior photocatalytic response towards UV and visible light.

The Novel Functional Chromophores Based on Squarylium Dyes

  • Park, Soo-Youl;Jun, Kun;Oh, Sea-Wha
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권3호
    • /
    • pp.428-432
    • /
    • 2005
  • Squarylium or squaraine dyes are derived from 1,2-dihydroxycyclobuten-3,4-dione, otherwise known as squaric acids. They are two principal types: the 1,2-bisdonorsubstituted derivatives, and the 1,3-bisdonorsubstituted derivatives. The former are essentially merocyanines and have no distinctive properties, whereas the latter represent a unique type of chromophore, which is neither a merocyanines nor cyanine and has exceptional light absorption characteristics. They also have many functional applications based on their special properties. Thus it was the objective of this research project to synthesize a range of 1,3-squarylium dyes of widely differing structural types, and to investigate their light absorption and fluorescence properties in general, and the color change properties of appropriate examples in particular. Also in this study, the various pHinduced colour change processes were examined.

HDPE, PP 및 PS의 등온열분해에 의한 액화 특성 (Liquefaction Characteristics of HDPE, PP and PS by Isothermal Pyrolysis)

  • 유홍정;박수열;이봉희
    • 한국응용과학기술학회지
    • /
    • 제19권3호
    • /
    • pp.198-205
    • /
    • 2002
  • Isothermal pyrolysis of high density polyethylene(HDPE), polypropylene(PP) and polystyrene(PS) was performed at $450^{\circ}C$, respectively. The effect of pyrolysis time on yield and product composition was investigated. Conversion and liquid yield obtained during HDPE pyrolysis continuously increased with time up to 80minutes, but those of PP and PS did not largely change after 35minutes. Each liquid product formed during the pyrolysis was classified into gasoline, kerosene, light oil and wax according to the distillation temperature based on the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. The major liquid product of HDPE pyrolysis was light oiH34 wt.% based on the amount of HDPE treated) and the amounts of the other liquid ingredients(gasoline, kerosene and wax) were almost the same. On the other hand, the pyrolysis of PP produced 27 wt.% gasoline, 22 wt.% kerosene, 24 wt.% light oil and 13wt.% wax, and the pyrolysis of PS produced 56 wt.% gasoline, 12 wt.% kerosene, 9 wt.% light oil and 13 wt.% wax.

Purple Membrane으로 재구성된 $L-{\alpha}-lecithin$ Vesicle에서 Photochemical Reaction Differential Scanning Calorimetry에 의한 Methylene Blue의 에너지 전달 (Energy Transfer of Methylene Blue on the Purple Membrane Incorporated into $L-{\alpha}-lecithin$ Vesicle by Photochemical Reaction Differential Scanning Calorimetry)

  • 김기준;성기천;이후설
    • 한국응용과학기술학회지
    • /
    • 제13권3호
    • /
    • pp.127-136
    • /
    • 1996
  • Thermograms of methylene blue(MB) in $L-{\alpha}-lecithin$ vesicle and incorporated purple membrane vesicle(InPM) systems have been studied by photochemical reaction differential scanning calorimetry at $25{\sim}55^{\circ}C$. Phase transition temperatures of lecithin vesicle, purple membrane(PM), and InPM were found to be independent of illumination of light(436nm) at $39{\sim}40^{\circ}C$, but endothermic phase transition was found in InPM vesicle. In MB-InPM system, endothermic phase transition was found on unillumination of light at $40{\sim}42^{\circ}C$, but exothermic phase transition was found on steady illumination of light at $48{\sim}52^{\circ}C$. It was estimated that the light energy absorbed from MB on vesicular surface was transferred to PM, and the transferred energy was redistributed to hydrophobic site of membrane. Therefore, the exothermic phase transition was measured at high temperature because of the increased hydrophobicity of acyl chain.

Photocatalytic Hydrogen Production in Water-Methanol Mixture over Iron-doped CaTiO3

  • Jang, J. S.;Borse, P. H.;Lee, J. S.;Lim, K. T.;Jung, O. S.;Jeong, E. D.;Bae, J. S.;Kim, H. G.
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권1호
    • /
    • pp.95-99
    • /
    • 2011
  • $CaTi_{1-x}Fe_xO_3(0{\leq}x{\leq}0.4)$ solid solution photocatalysts were synthesized by iron doping during the conventional solid state reaction at $1100^{\circ}C$ for 5 h and characterized by ultraviolet-visible (UV-vis) absorption spectroscopy, X-ray diffraction, morphological analysis. We found that $CaTi_{1-x}Fe_xO_3$ samples not only absorb UV but also the visible light photons. This is because the Fe substitution at Ti-site in $CaTi_{1-x}Fe_xO_3$ lattice induces the band transition from Fe3d to the Fe3d + Ti3d hybrid orbital. The photocatalytic activity of Fe doped $CaTiO_3$ samples for hydrogen production under UV light irradiation decreased with the increase in the Fe concentration. There exists an optimized concentration of iron in $CaTiO_3$, which yields a maximum photocatalytic activity under visible light ($\lambda\geq420nm$) photons.

Developing a Testing Method for Antimicrobial Efficacy on TiO2 Photocatalytic Products

  • Kim, Jee-Yeon;Park, Chang-Hun;Yoon, Je-Yong
    • Environmental Engineering Research
    • /
    • 제13권3호
    • /
    • pp.136-140
    • /
    • 2008
  • $TiO_2$ photocatalyst has been known to exhibit a notable disinfecting activity against a broad spectrum of microorganisms. A lot of commercial $TiO_2$ photocatalyst products have been developed for antimicrobial purposes. However, a standard method has not yet been proposed for use in testing antimicrobial activity. In this study, we developed a $TiO_2$ photocatalytic adhesion test method with film as the standard testing method for the evaluation of antimicrobial activity. This method was devised by modifying the previous antimicrobial products test method, which has been widely used, and considering the characteristics of $TiO_2$ photocatalytic reaction. The apparatus for testing the antimicrobial activity was composed of a Black Light Blue (BLB) lamp as UV-A light source, a Petri dish as the cover material, and a polypropylene film as the adhesion film. The standard $TiO_2$ photocatalyst sample, Degussa P25 $TiO_2$ - coated glass, could only be used once. The optimal initial concentration of the microorganism, proper light intensity, and light irradiation time were determined to be $10^6$ CFU/mL, 1.0 mW/$cm^2$, and 3 hr, respectively, for testing and evaluating antimicrobial activity on the $TiO_2$ surface.

경질 탄화수소 촉매 열분해를 위한 Ni 기반 구슬 촉매에 대한 연구 (Study on Ni-based Bead Catalyst for Catalytic Thermal Decomposition of Light Hydrocarbons)

  • 우진혁;김주언;김태영;이수출;김재창
    • 한국수소및신에너지학회논문집
    • /
    • 제35권1호
    • /
    • pp.27-33
    • /
    • 2024
  • In this study, we researched Ni-based bead catalysts for the catalytic thermal decomposition of light hydrocarbons. A Ni-based bead-type catalyst was prepared, and catalytic thermal decomposition performance of light hydrocarbons was evaluated. The 30Ni/Al2O3 catalyst exhibited the most superior performance, with the presence of both fibrous and carbon black forms on the catalyst surface. Catalytic performance was evaluated for particles sized between 150-250 and 500 ㎛, with excellent catalytic thermal decomposition properties in the 150-250 ㎛ range. After the reaction, carbon removal through collision between catalysts in the fluidized bed was observed. It was confirmed that as the particle size increases, the amount of carbon removed increases.

Light Modulation-전자상자성공명법을 이용한 절대속도상수의 결정 (The Absolute Rate Measurement by Light Modulation-ESR Technique)

  • 주광열
    • 대한화학회지
    • /
    • 제21권4호
    • /
    • pp.270-275
    • /
    • 1977
  • Modulated light signal과 trimethylsilyl 유리기의 전자상자성 공명 signal과의 phase shift를 측정함으로써 t-butoxy 유리기와 trimethylsilane의 절대 반응속도 상수는 $-50^{\circ}C$에서 $3{\times}10^{-2}M^{-1}{\cdot}sec^{-1}$으로 얻을 수 있었다.

  • PDF