• 제목/요약/키워드: chemical hydrogen storage$H_2$ release

검색결과 4건 처리시간 0.018초

수소 발생을 위한 암모니아 보레인의 열분해 (Thermal Decomposition of Ammonia Borane for $H_2$ Release)

  • 이지홍;이현주;안병성;김창수
    • 한국수소및신에너지학회논문집
    • /
    • 제19권4호
    • /
    • pp.299-304
    • /
    • 2008
  • Thermal decomposition of Ammonia Borane have been investigated with various analytical methods including TGA, TP-MS, DSC. By-products such as aminoborane and borazine were identified during hydrogen release by TGA, TP-MS analysis. $H_2$ release amount was measured at each temperature isothermally, which resulted in 7 wt% $H_2$ release at 130$^{\circ}C$. Moreover, higher temperature enhanced hydrogen release kinetics leading to shortened induction period from 20 min at 95$^{\circ}C$ to 0 min at 130$^{\circ}C$. Melting and decomposition at close temperature (4$^{\circ}C$ difference) caused the formation of thin foam during hydrogen release. Suppression of by-products and thin foam formation during hydrogen release is suggested as critical issues to realize chemical hydrogen storage system with ammonia borane.

Fe/Zr/Mo 혼합 산화물 매체의 Redox 반응을 이용한 수소 저장 및 방출 (Hydrogen Storage and Release by Redox Reaction of Fe/Zr/Mo Mixed Oxide Mediums)

  • 제한솔;강은지;이수경;박주식;김영호
    • 한국수소및신에너지학회논문집
    • /
    • 제22권5호
    • /
    • pp.616-624
    • /
    • 2011
  • Hydrogen storage and release of Fe/Zr/Mo mixed oxide mediums were investigated by hydrogen reduction and water splitting oxidation($Fe_3O_4+4H_2{\rightleftharpoons}3Fe+4H_2O$). As the results of TPR/O, Mo was an additive to enhance the reactivity of water splitting oxidation as well as the stability of the medium. On the other hand, it seemed that $ZrO_2$ additive provided the passway for the diffusion of gaseous chemicals on the medium in repeated redox cycles. Among the Fe/Zr/Mo mediums, a FeZrMo-7 medium (Fe/Zr/Mo=80/13/7mol%) exhibited the best performance with good durability during five repeated redox cycles. The amount of hydrogen evolved on the medium was maintained at ca. 10.7mmol-$H_2$/g-medium corresponding to the hydrogen storage amount of ca. 2.2wt%.

Hydrogen Absorption at a Low Temperature by MgH2 after Reactive Mechanical Grinding

  • Song, Myoung Youp;Lee, Seong Ho;Kwak, Young Jun;Park, Hye Ryoung
    • 한국재료학회지
    • /
    • 제24권3호
    • /
    • pp.129-134
    • /
    • 2014
  • Pure $MgH_2$ was milled under a hydrogen atmosphere (reactive mechanical grinding, RMG). The hydrogen storage properties of the prepared samples were studied at a relatively low temperature of 423 K and were compared with those of pure Mg. The hydriding rate of the Mg was extremely low (0.0008 wt% H/min at n = 4), and the $MgH_2$ after RMG had higher hydriding rates than that of Mg at 423 K under 12 bar $H_2$. The initial hydriding rate of $MgH_2$ after RMG at 423 K under 12 bar $H_2$ was the highest (0.08 wt% H/min) at n = 2. At n = 2, the $MgH_2$ after RMG absorbed 0.39 wt% H for 5 min, and 1.21 wt% H for 60 min at 423K under 12 bar $H_2$. At 573 K under 12 bar $H_2$, the $MgH_2$ after RMG absorbed 4.86 wt% H for 5 min, and 5.52 wt% H for 60 min at n = 2. At 573 K and 423 K under 1.0 bar $H_2$, the $MgH_2$ after RMG and the Mg did not release hydrogen. The decrease in particle size and creation of defects by reactive mechanical grinding are believed to have led to the increase in the hydriding rate of the $MgH_2$ after RMG at a relatively low temperature of 423 K.

Oxidative Damage of DNA Induced by Ferritin and Hydrogen Peroxide

  • Kang, Jung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권10호
    • /
    • pp.2873-2876
    • /
    • 2010
  • Excess free iron generates oxidative stress that may contribute to the pathogenesis of various causes of neurodegenerative diseases. Previous studies have shown that one of the primary causes of increased brain iron may be the release of excess iron from intracellular iron storage molecules. In this study, we attempted to characterize the oxidative damage of DNA induced by the reaction of ferritin with $H_2O_2$. When DNA was incubated with ferritin and $H_2O_2$, DNA strand breakage increased in a time-dependent manner. Hydroxyl radical scavengers strongly inhibited the ferritin/$H_2O_2$ system-induced DNA cleavage. We investigated the generation of hydroxyl radical in the reaction of ferritin with $H_2O_2$ using a chromogen, 2,2'-azinobis-(2-ethylbenzthiazoline-6-sulfonate) (ABTS), which reacted with ${\cdot}OH$ to form $ABTS^{+\cdot}$. The initial rate of $ABTS^{+\cdot}$ formation increased as a function of incubation time. These results suggest that DNA strand breakage is mediated in the reaction of ferritin with $H_2O_2$ via the generation of hydroxyl radicals. The iron-specific chelator, deferoxamine, also inhibited DNA cleavage. Spectrophotometric study using a color reagent showed that the release of iron from $H_2O_2$-treated ferritin increased in a time-dependent manner. Ferritin enhanced mutation of the lacZ' gene in the presence of $H_2O_2$ when measured as a loss of $\alpha$-complementation. These results indicate that ferritin/$H_2O_2$ system-mediated DNA cleavage and mutation may be attributable to hydroxyl radical generation via a Fenton-like reaction of free iron ions released from oxidatively damaged ferritin.