• Title/Summary/Keyword: chemical heat conversion

Search Result 138, Processing Time 0.02 seconds

Application of Acrylic Resins Containing Acetoacetoxy Group and 90% Solid Contents to High-Solid Coatings (아세토아세톡시기 함유 90% 고형분인 아크릴수지의 하이솔리드 도료에의 적용)

  • Park, Hong-Soo;Kim, Bo-Bae;Kim, Ji-Hyun;Park, Eun-Su;Yoon, Hyun-Don;Lee, Young-Jun;Yeon, Je-Won;Ka, Eun-Ji;Lee, Ji-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.322-331
    • /
    • 2008
  • In order to synthesize high-solid coatings, acrylic resins (HSAs) containing 90% solid content were first synthesized, then the synthesized HSAs were cured with a curing agent, isocyanate, at room temperature to obtain high-solid coatings. In the HSAs synthesis, conversion was in a range of $82{\sim}87%$, and viscosities and number-averaged molecular weight ($M_n$) of the HSAs were in a range of $4380{\sim}8010$ cP and $1540{\sim}1660$, respectively. From the correlation between $T_g$ value, viscosity and $M_n$, it was found that, with increasing $T_g$ value, viscosity increases rapidly and molecular weight increases slowly. From the visco-elasity measured by the pendulum method, it was found that the curing time decreased with increasing $T_g$ values. From the tests of physical properties of the coatings' film, $60^{\circ}$ specular gloss, impact resistance and heat resistance were proved to be good and pencil hardness, drying time and pot-life were proved to be poor.

Research Trends in Photothermal Therapy Using Gold Nanoparticles (금 나노입자를 이용한 광열치료 연구 동향)

  • Kim, Bong-Geun;Yeo, Do Gyeong;Na, Hyon Bin
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.383-396
    • /
    • 2017
  • The photothermal therapy is a method of cell ablation using the heat converted from the incident light by photothermal transducers. It offers a selective treatment to desired abnormal cells, in particular, tumor tissues. Among various photothermal agents, gold nanoparticles (Au NPs) have received enormous attention due to their unique physicochemical property over last two decades. In this review, we address research strategies and methods to improve treatment efficacy by organizing recent research works. We mainly focus on research works to enhance light-to-heat conversion via optimizing the morphology of Au NPs and related assemblies as well as the strategies to deliver Au NPs efficiently to specific targets. We also introduce convergence research efforts to combine Au NP-mediated photothermal treatment and other functions such as diagnostic capabilities and other therapeutic methods.

Process Design and Economics for Conversion of Kenaf to Syngas (케나프 기반 합성가스 생산을 위한 공정 설계 및 경제성 평가)

  • Byun, Jaewon;Park, Hoyoung;Kang, Dongseong;Kwon, Oseok;Han, Jeehoon
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.362-368
    • /
    • 2020
  • Syngas can be used as raw material for chemical and fuel production. Currently, many studies on syngas production from gasification of biomass have been conducted. Kenaf is a promising renewable resource with high productivity and CO2 immobilization. This study developed a large-scale kenaf gasification process based on the experimental data, and evaluated the techno-economic feasibility, which consists of three steps (integrated process design, heat exchanger network design, techno-economic assessment). The minimum selling price of syngas is US$ 9.55/GJ, and it is lower than current market price of syngas.

Effects of Heat Pre-Treatment and Reactor Configurations on the Anaerobic Treatment of Volatile Solids (열전처리와 반응조 형태가 고형 유기물의 혐기성 처리에 미치는 영향)

  • Hong, Young-Soek;Bae, Jae-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.2
    • /
    • pp.104-116
    • /
    • 1996
  • Anaerobic digestion is generally used for the treatment of volatile organic solids such as manure and sludge from waste water treatment plants. However, the reaction rate of anaerobic process is slow, and thus it requires a large reactor volume. To minimize such a disadvantage, physical and chemical pre-treatment is generally considered. Another method to reduce the reactor size is to adopt different reactor system other than CSTR. In this paper, the effects of heat pre-treatment and reactor configurations on the anaerobic treatability of volatile solids was studied. Carrot, kale, primary sludge, and waste activated sludge was chosen as the test materials, and the BMP method was used to evaluate the maximum methane production and first order rate constants from each sample. After the heat treatment at $130^{\circ}C$ for 30min., the measured increase in SCOD per gram VS was up to 394 mg/L for the waste activated sludge. However, the methane production potential per gram VS was increased for only primary and waste activated sludge by 17-23%, remaining the same for carrot and kale. The overall methane production process for the tested solids can be described by first order reactions. The increased in reaction constant after heat pre-treatment was also more significant for the primary and waste activated sludge than that for carrot and kale. therefore, the heat pre-treatment appeared to be effective for the solids with high protein contents rather than for the solids with high carbohydrate contents. Among the four reactor systems studied, CSTR, PFR, CSTR followed by PFR, and PFR with recycle, CSTR followed by PFR appeared to be the best choice considering methane conversion rate and the operational stability.

  • PDF

A Study on the Regeneration Effects of Commercial $V_2O_5-WO_3/TiO_2$ SCR Catalyst for the Reduction of NOx (질소산화물 제거용 상용 $V_2O_5-WO_3/TiO_2$ SCR 폐 촉매의 재생 효과 고찰)

  • Park, Hea-Kyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.859-869
    • /
    • 2005
  • The commercial $V_2O_5-WO_3/TiO_2$ catalysts which had been exposed to the off gas from incinerator for a long time were regenerated by physical and chemical treatment. The catalytic properties and NOx conversion reactivity of those catalysts were examined by analysis equipment and NOx conversion experiment. The characterization of the catalysts were performed by XRD(x-ray diffractometer), BET, POROSIMETER, EDX(energy dispersive x-ray spectrometer), ICP(inductively coupled plasma), TGA(thermogravimetric analyzer) and SEM (scanning electron microscopy). NOx conversion experiment were performed with simulated off gas of the incinerator and $NH_3$ was used as a reductant of SCR reaction. Among the regeneration treatment methods which were applied to regenerate the aged catalysts in this study, it showed that the heat treatment method had excellent regeneration effect on the catalytic performance for NOx conversion. The catalytic performance of the regenerated catalysts with heat treatment method were recovered over than 95% of that of fresh catalyst. For the regenerated catalysts with the acid solution(pH 5) and the alkali solution(pH 12), the catalytic performance were recovered over than 90% of that of fresh catalyst. From the characterization results of the regenerated catalysts, the specific surface area was recovered in the range of $85{\sim}95%$ of that of fresh catalyst. S and Ca element, which are well known as the deactivation materials for the SCR catalysts, accumulated on the aged catalyst surface were removed up to maximum 99%. Among the P, Cr, Zn and Pb elements accumulated on the aged catalyst surface, P, Cr and Zn element were removed up to 95%. But the Pb element were removed in the range of $10{\sim}30%$ of that of fresh catalyst.

Burke-Schumann analysis of silica formation by hydrolysis in an external chemical vapor deposition process (외부 화학증착 공정에서의 가수분해반응으로 인한 실리카 생성에 대한 버크-슈만 해석)

  • Song, Chang-Geol;Hwang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.5
    • /
    • pp.1671-1678
    • /
    • 1996
  • In external chemical vapor deposition processes including VAD and OVD the distribution of flame-synthesized silica particles is determined by heat and mass transfer limitations to particle formation. Combustion gas flow velocities are such that the particle diffusion time scale is longer than that of gas flow convection in the zone of particle formation. The consequence of these effects is that the particles formed tend to remain along straight smooth flow stream lines. Silica particles are formed due to oxidation and hydrolysis. In the hydrolysis, the particles are formed in diffuse bands and particle formation thus requires the diffusion of SiCl$\_$4/ toward CH$\_$4//O$\_$2/ combustion zone to react with H$\_$2/O diffusing away from these same zones on the torch face. The conversion kinetics of hydrolysis is fast compared to diffusion and the rate of conversion is thus diffusion-limited. In the language of combustion, the hydrolysis occurs as a Burke-Schumann process. In selected conditions, reaction zone shape and temperature distributions predicted by the Burke-Schumann analysis are introduced and compared with experimental data available. The calculated centerline temperatures inside the reaction zone agree well with the data, but the calculated values outside the reaction zone are a little higher than the data since the analysis does not consider diffusion in the axial direction and mixing of the combustion products with ambient air. The temperatures along the radial direction agree with the data near the centerline, but gradually diverge from the data as the distance is away from the centerline. This is caused by the convection in the radial direction, which is not considered in the analysis. Spatial distribution of silica particles are affected by convection and diffusion, resulting in a Gaussian form in the radial direction.

Comparative studies for the performance of a natural gas steam reforming in a membrane reactor (분리막 반응기를 이용한 천연가스 개질반응의 성능에 관한 비교 분석)

  • Lee, Boreum;Lim, Hankwon
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.95-101
    • /
    • 2016
  • For a natural gas steam reforming, comparative studies of the performance in a conventional packed-bed reactor and a membrane reactor, a new conceptual reactor consisting of a reactor with series of hydrogen separation membranes, have been performed. Based on experimental kinetics reported by Xu and Froment, a process simulation model was developed with Aspen $HYSYS^{(R)}$, a commercial process simulator, and effects of various operating conditions like temperature, $H_2$ permeance, and Ar sweep gas flow rate on the performance in a membrane reactor were investigated in terms of reactant conversion and $H_2$ yield enhancement showing improved $H_2$ yield and methane conversion in a membrane reactor. In addition, a preliminary cost estimation focusing on natural gas consumption to supply heat required for the system was carried out and feasibility of possible cost savings in a membrane reactor was assessed with a cost saving of 10.94% in a membrane reactor.

Computational Heat Transfer Analysis of High Temperature Solar Receiver (수치해석기법을 이용한 고온태양열 흡수기의 열성능 분석)

  • Kim, Tae-Jun;Lee, Ju-Han;Han, Gui-Young;Kang, Yong-Heack;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.4
    • /
    • pp.22-27
    • /
    • 2009
  • This study focus on verification of the thermal efficiency of volumetric receiver with 5k Wth Dish-type solar thermal system. Spiral flow path shaped on receiver and working fluid(steam) flow along with this flow path. Porous material for radiation-thermal conversion used in former researches are substituted with the stainless steel wall installed along the spiral flow path. Numerical analysis for the flow path and temperature distributions are carried out. Numerical results are compared with experimental data. Using the numerical model, the heat transfer characteristics of spiral type receiver for dish-type solar thermal systems are known and the thermal performance of the receiver can be estimated.

Design of TAME Process using a Commercial Design Software (상업용 설계 프로그램을 이용한 TAME 공정의 설계)

  • Hwang, Kyu Suk;Lee, Moon Yong;Kim, Young Han
    • Korean Chemical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.52-56
    • /
    • 2007
  • Though a reactive distillation column reduces energy requirement and gives easy separation of azeotropic mixture to result in wide practical applications in field, its design is difficult. On the other hand, a commercial design software used largely in chemical process design and performance evaluation can solve the problem, but the addition of reaction into the tray is not simple. In this study the addition is implemented to make the process simulation available, and it is utilized in the design of a TAME process to find the following design guidelines. The addition of reactive trays gives more composition elevation than the composition decrease from the reduction of the trays, and the increase of non-reactive trays does not improve product quality. The elevation of reboiler heat duty lowers the product quality by the reduction of residence time in reactive tray and conversion.

Available Technology and Integrated Management Plan for Energy-positive in the Sewage Treatment Plant (에너지 생산형 하수처리장을 위한 가용 기술과 통합관리 방안)

  • Song, Minsu;Kim, Hyoungho;Bae, Hyokwan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.1
    • /
    • pp.55-68
    • /
    • 2020
  • Because of the intensified environmental problems such as climate change and resource depletion, sewage treatment technology focused on energy management has recently attracted attention. The conversion of primary sludge from the primary sedimentation tank and excessive sludge from the secondary sedimentation tank into biogas is the key to energy-positive sewage treatment. In particular, the primary sedimentation tanks recover enriched biodegradable organic matter and anaerobic digestion process produces methane from the organic wastes for energy production. Such technologies for minimizing oxygen demand are leading the innovation regarding sewage treatment plants. However, sewage treatment facilities in Korea lack core technology and operational know-how. Actually, the energy potential of sewage is higher than sewage treatment energy consumption in the sewage treatment, but current processes are not adequately efficient in energy recovery. To improve this, it is possible to apply chemically enhanced primary treatment (CEPT), high-rate activated sludge (HRAS), and anaerobic membrane bioreactor (AnMBR) to the primary sedimentation tank. To maximize the methane production of sewage treatment plants, organic wastes such as food waste and livestock manure can be digested. Additionally, mechanical pretreatment, thermal hydrolysis, and chemical pretreatment would enhance the methane conversion of organic waste. Power generation systems based on internal combustion engines are susceptible to heat source losses, requiring breakthrough energy conversion systems such as fuel cells. To realize the energy positive sewage treatment plant, primary organic matter recovery from sewage, biogas pretreatment, and co-digestion should be optimized in the energy management system based on the knowledge-based operation.