Browse > Article
http://dx.doi.org/10.14478/ace.2017.1039

Research Trends in Photothermal Therapy Using Gold Nanoparticles  

Kim, Bong-Geun (Department of Chemical Engineering, Myongji University)
Yeo, Do Gyeong (Department of Chemical Engineering, Myongji University)
Na, Hyon Bin (Department of Chemical Engineering, Myongji University)
Publication Information
Applied Chemistry for Engineering / v.28, no.4, 2017 , pp. 383-396 More about this Journal
Abstract
The photothermal therapy is a method of cell ablation using the heat converted from the incident light by photothermal transducers. It offers a selective treatment to desired abnormal cells, in particular, tumor tissues. Among various photothermal agents, gold nanoparticles (Au NPs) have received enormous attention due to their unique physicochemical property over last two decades. In this review, we address research strategies and methods to improve treatment efficacy by organizing recent research works. We mainly focus on research works to enhance light-to-heat conversion via optimizing the morphology of Au NPs and related assemblies as well as the strategies to deliver Au NPs efficiently to specific targets. We also introduce convergence research efforts to combine Au NP-mediated photothermal treatment and other functions such as diagnostic capabilities and other therapeutic methods.
Keywords
photothermal therapy; gold nanoparticles; theranostics;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proc. Natl. Acad. Sci. USA, 100, 13549-13554 (2003).   DOI
2 D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, Therapeutic possibilities of plasmonically heated gold nanoparticles, Trends Biotechnol., 24, 62-67 (2006).   DOI
3 X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods, J. Am. Chem. Soc., 128, 2115-2120 (2006).   DOI
4 C. Iancu, Photothermal therapy of human cancers (PTT) using gold nanoparticles, Biotechnol. Mol. Biol. Nanomed., 1, 53-60 (2013).
5 A. J. Mieszawska, W. J. M. Mulder, Z. A. Fayad, and D. P. Cormode, Multifunctional gold nanoparticles for diagnosis and therapy of disease, Mol. Pharm., 10, 831-847 (2013).   DOI
6 A. M. Alkilany and C. J. Murphy, Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?, J. Nanopart. Res., 12, 2313-2333 (2010).   DOI
7 X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, Plasmonic photothermal therapy (PPTT) using gold nanoparticles, Lasers Med. Sci., 23, 217-228 (2007).
8 S. D. Perrault, C. Walkey, T. Jennings, H. C. Fischer, and W. C. W. Chan, Mediating tumor targeting efficiency of nanoparticles through design, Nano Lett., 9, 1909-1915 (2009).   DOI
9 L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, A new era for cancer treatment: gold nanoparticle-mediated thermal therapies, Small, 7, 169-183 (2011).   DOI
10 X. Huang, S. Neretina, and M. A. El-Sayed, Gold nanorods: from synthesis and properties to biological and biomedical applications, Adv. Mater., 21, 4880-4910 (2009).   DOI
11 K. A. Kozek, K. M. Kozek, W. C. Wu, S. R. Mishra, and J. B. Tracy, Large-scale synthesis of gold nanorods through continuous secondary growth, Chem. Mater., 25, 4537-4544 (2013).   DOI
12 S. E. Skrabalak, L. Au, X. Li, and Y. Xia, Facile synthesis of Ag nanocubes and Au nanocages, Nat. Protoc., 2, 2182-2190 (2007).   DOI
13 G. v. Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas, Cancer Res., 69, 3892-3900 (2009).   DOI
14 E. B. Dickerson, E. C. Dreaden, X. Huang, I. H. El-Sayed, H. Chu, S. Pushpanketh, J. F. McDonald, and M. A. El-Sayed, Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice, Cancer Lett., 269, 57-66 (2008).   DOI
15 J. S. Choi and S. Y. Kim, Synthesis and characterization of photosensitizer-conjugated gold nanorods for photodynamic/photothermal therapy, Appl. Chem. Eng., 27, 599-605 (2016).   DOI
16 T. Sugiura, D. Matsuki, J. Okajima, A. Komiya, S. Mori, S. Maruyama, and, T. Kodama, Photothermal therapy of tumors in lymph nodes using gold nanorods and near-infrared laser light with controlled surface cooling, Nano Res., 8, 3842-3852 (2015).   DOI
17 M. Hu, J. Chen, Z.-Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez, and Y. Xia, Gold nanostructures: engineering their plasmonic properties for biomedical applications, Chem. Soc. Rev., 35, 1084-1094 (2006).   DOI
18 M. R. K. Ali, Y. Wu, T. Han, X. Zang, H. Xiao, Y. Tang, R. Wu, F. M. Fernandez, and M. A. El-Sayed, Simultaneous time-dependent surface-enhanced Raman spectroscopy, metabolomics, and proteomics reveal cancer cell death mechanisms associated with gold nanorod photothermal therapy, J. Am. Chem. Soc., 138, 15434-15442 (2016).   DOI
19 S. Parida, C. Maiti, Y. Rajesh, K. K. Dey, I. Pal, A. Parekh, R. Patra, D. Dhara, P. K. Dutta, and M. Mandal, Gold nanorod embedded reduction responsive block copolymer micelle-triggered drug delivery combined with photothermal ablation for targeted cancer therapy, Biochim. Biophys. Acta, 1861, 3039-3052 (2017).   DOI
20 A. Murshid, J. Gong, M. A. Stevenson, and S. K. Calderwood, Heat shock proteins and cancer vaccines: developments in the past decade and chaperoning in the decade to come, Expert Rev. Vaccines, 10, 1553-1568 (2011).   DOI
21 X. Huang and M. A. El-Sayed, Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy, J. Adv. Res., 1, 13-28 (2010).   DOI
22 S. Paterson, S. A. Thompson, J. Gracie, A. W. Wark, and R. de la Rica, Self-assembly of gold supraparticles with crystallographically aligned and strongly coupled nanoparticle building blocks for SERS and photothermal therapy, Chem. Sci., 7, 6232-6237 (2016).   DOI
23 S. Kang, S. H. Bhang, S. Hwang, J. K. Yoon, J. Song, H.-K. Jang, S. Kim, and B.-S. Kim, Mesenchymal stem cells aggregate and deliver gold nanoparticles to tumors for photothermal therapy, ACS Nano, 9, 9678-9690 (2015).   DOI
24 T. W. Huang, S. H. Tseng, C. C. Lin, C. H. Bai, C. S. Chen, C. S. Hung, C. H. Wu, and K. W. Tam, Effects of manual lymphatic drainage on breast cancer-related lymphedema: a systematic review and meta-analysis of randomized controlled trials, World J. Surg. Oncol., 11, 15 (2013).   DOI
25 M. Neshatian, S. Chung, D. Yohan, C. Yang, and D. B. Chithrani, Determining the size dependence of colloidal gold nanoparticle uptake in a tumor-like interface (hypoxic), Colloids Interface Sci. Commun., 1, 57-61 (2014).   DOI
26 M. Yang, Y. Liu, W. Hou, X. Zhi, C. Zhang, X. Jiang, F. Pan, Y. Yang, J. Ni, and D. Cui, Mitomycin C-treated human-induced pluripotent stem cells as a safe delivery system of gold nanorods for targeted photothermal therapy of gastric cancer, Nanoscale, 9, 334-340 (2017).   DOI
27 S. Wang, Z. Teng, P. Huang, D. Liu, Y. Liu, Y. Tian, J. Sun, Y. Li, H. Ju, X. Chen, and G. Lu, Reversibly extracellular pH controlled cellular uptake and photothermal therapy by PEGylated mixed-charge gold nanostars, Small, 11, 1801-1810 (2015).   DOI
28 Y. Du, Q. Jiang, N. Beziere, L. Song, Q. Zhang, D. Peng, C. Chi, X. Yang, H. Guo, G. Diot, V. Ntziachristos, B. Ding, and J. Tian, DNA-nanostructure-gold-nanorod hybrids for enhanced in vivo optoacoustic imaging and photothermal therapy, Adv. Mater., 28, 10000-10007 (2016).   DOI
29 N. Zhang, X. Xu, X. Zhang, D. Qu, L. Xue, R. Mo, and C. Zhang, Nanocomposite hydrogel incorporating gold nanorods and paclitaxel-loaded chitosan micelles for combination photothermal-chemotherapy, Int. J. Pharm., 497, 210-221 (2016).   DOI
30 Y. Liu, M. Yang, J. Zhang, X. Zhi, C. Li, C. Zhang, F. Pan, K. Wang, Y. Yang, J. Martinez de la Fuentea, and D. Cui, Human induced pluripotent stem cells for tumor targeted delivery of gold nanorods and enhanced photothermal therapy, ACS Nano, 10, 2375-2385 (2016).   DOI
31 M. Singh, D. C. C. Harris-Birtill, Y. Zhou, M. E. Gallina, A. E. G. Cass, G. B. Hanna, and D. S. Elson, Application of gold nanorods for photothermal therapy in ex vivo human oesophagogastric adenocarcinoma, J. Biomed. Nanotechnol., 12, 481-490 (2016).   DOI
32 S. I. Hussein, A. S. Sultan, and N. Y. Yaseen, Gold nanoparticles for photothermal therapy of cancerous cells in vitro, Int. J. Curr. Microbiol. Appl. Sci., 5, 261-266 (2016).
33 X. Kang, X. Guo, X. Niu, W. An, S. Li, Z. Liu, Y. Yang, N. Wang, Q. Jiang, C. Yan, H. Wang, and Q. Zhag, Photothermal therapeutic application of gold nanorods-porphyrin-trastuzumab complexes in HER2-positive breast cancer, Sci. Rep., 7, 42069 (2017).   DOI
34 B. K. Jung, Y. K. Lee, J. Hong, H. Ghandehari, and C. O. Yun, Mild hyperthermia Induced by gold nanorod-mediated plasmonic photothermal therapy enhances transduction and replication of oncolytic adenoviral gene delivery, ACS Nano, 10, 10533-10543 (2016).   DOI
35 M. Yu, F. Guo, J. Wang, F. Tan, and N. Li, Photosensitizer-loaded pH-responsive hollow gold nanospheres for single light-induced photothermal/photodynamic therapy, ACS Appl. Mater. Interfaces, 7, 17592-17597 (2015).   DOI
36 E. L. L. Yeo, J. U. J. Cheah, D. J. H. Neo, W. I. Goh, P. Kanchanawong, K. C. Soo, P. S. P. Thong, and J. C. Y. Kah, Exploiting the protein corona around gold nanorods for low-dose combined photothermal and photodynamic therapy, J. Mater. Chem. B, 5, 254-268 (2017).   DOI
37 M. Aioub, S. R. Panikkanvalappil, and M. A. El-Sayed, Platinum-coated gold nanorods: efficient reactive oxygen scavengers that prevent oxidative damage toward healthy, untreated cells during plasmonic photothermal therapy, ACS Nano, 11, 579-586 (2017).   DOI
38 Y. C. Ou, J. A. Webb, S. Faley, D. Shae, E. M. Talbert, S. Lin, C. C. Cutright, J. T. Wilson, L. M. Bellan, and R. Bardhan, Gold nanoantenna-mediated photothermal drug delivery from thermosensitive liposomes in breast cancer, ACS Omega, 1, 234-243 (2016).   DOI
39 M. R. K. Ali, H. R. Ali, C. R. Rankin, M. A. El-Sayed, Targeting heat shock protein 70 using gold nanorods enhances cancer cell apoptosis in low dose plasmonic photothermal therapy, Biomaterials, 102, 1-8 (2016).   DOI
40 B. K. Wang, X. F. Yu, J. H. Wang, Z. B. Li, P. H. Li, H. Wang, L. Song, P. K. Chu, and C. Li, Gold-nanorods-siRNA nanoplex for improved photothermal therapy by gene silencing, Biomaterials, 78, 27-39 (2016).   DOI
41 F. Pene, E. Courtine, A. Cariou, and J. P. Mira, Toward theragnostics, Crit. Care Med., 37, S50-S58 (2009).   DOI
42 W. Cai, T. Gao, H. Hong, and J. Sun, Applications of gold nanoparticles in cancer nanotechnology, Nanotechnol. Sci. Appl., 1, 17-32 (2008).   DOI
43 C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence, Anal. Chem., 77, 3261-3266 (2005).   DOI
44 D. Radziuk and H. Moehwald, Highly effective hot spots for SERS signatures of live fibroblasts, Nanoscale, 6, 6115-6126 (2014).   DOI
45 M. Azhdarzadeh, F. Atyabi, A. A. Saei, B. S. Varnamkhasti, Y. Omidi, M. Fateh, M. Ghavami, S. Shanehsazzadeh, and R. Dinarvand, Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer, Colloids Surf., B, 143, 224-232 (2016).   DOI
46 B. Jang, Y. S. Kim, and Y. Choi, Effects of gold nanorod concentration on the depth-related temperature increase during hyperthermic ablation, Small, 7, 265-270 (2011).   DOI
47 X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles, Photochem. Photobiol., 82, 412-417 (2006).   DOI
48 P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine, Acc. Chem. Res., 41, 1578-1586 (2008).   DOI
49 S. Kommareddy, S. B. Tiwari, and M. M. Amiji, Long-circulating polymeric nanovectors for tumor-selective gene delivery, Technol. Cancer Res. Treat., 4, 615-625 (2005).   DOI
50 R. Weissleder, A clearer vision for in vivo imaging, Nat. Biotechnol., 19, 316-317 (2001).   DOI
51 A. C. Anselmo and S. Mitragotri, Nanoparticles in the clinic, Bioeng. Transl. Med., 1, 10-29 (2016).
52 Y. Wu and B. P. Zhou, Inflammation: a driving force speeds cancer metastasis, Cell Cycle, 8, 3267-3273 (2009).   DOI
53 Y. Xia, X. Wu, J. Zhao, J. Zhao, Z. Li, W. Ren, Y. Tian, A. Li, Z. Shen, and A. Wu, Three dimensional plasmonic assemblies of AuNPs with an overall size of sub-200 nm for chemo-photothermal synergistic therapy of breast cancer, Nanoscale, 8, 18682-18692 (2016).   DOI
54 A. S. Thakor and S. S. Gambhir, Nanooncology: the future of cancer diagnosis and therapy, CA Cancer J. Clin., 63, 395-418 (2013).   DOI
55 S. Link and M. A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods, J. Phys. Chem. B, 103, 8410-8426 (1999).   DOI
56 S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence, J. Phys. Chem. A, 103, 1165-1170 (1999).   DOI
57 E. Buytaert, M. Dewaele, and P. Agostinis, Molecular effectors of multiple cell death pathways initiated by photodynamic therapy, Bioeng. Transl. Med., 1776, 86-107 (2007).
58 P. Mroz, A. Yaroslavsky, G. B. Kharkwal, and M. R. Hamblin, Cell death pathways in photodynamic therapy of cancer, Cancers, 3, 2516-2539 (2011).   DOI
59 R. D. Bonfil, O. D. Bustuoabad, R. A. Ruggiero, R. P. Meiss, and C. D. Pasqualini, Tumor necrosis can facilitate the appearance of metastases, Clin. Exp. Metastasis, 6, 121-129 (1988).   DOI
60 K. F. Chu and D. E. Dupuy, Thermal ablation of tumours: biological mechanisms and advances in therapy, Nat. Rev. Cancer., 14, 199-208 (2014).   DOI
61 M. Zhang, H. S. Kim, T. Jin, and W. K. Moon, Near-infrared photothermal therapy using EGFR-targeted gold nanoparticles increases autophagic cell death in breast cancer, J. Photochem. Photobiol., B, 170, 58-64 (2017).   DOI
62 M. Aioub and M. A. El-Sayed, A real-time surface enhanced raman spectroscopy study of plasmonic photothermal cell death using targeted gold nanoparticles, J. Am. Chem. Soc., 138, 1258-1264 (2016).   DOI
63 A. M. Gamal-Eldeen, D. Moustafa, S. M. El-Daly, E. A. El-Hussieny, S. Saleh, M. Khoobchandani, K. L. Bacon, S. Gupta, K. Katti, R. Shukla, and K. V. Katti, Photothermal therapy mediated by gum Arabic-conjugated gold nanoparticles suppresses liver preneoplastic lesions in mice, J. Photochem. Photobiol. B, 163, 47-56 (2016).   DOI
64 ClinicalTrials.gov, Pilot study of AuroLase (tm) therapy in refractory and/or recurrent tumors of the head and neck, U.S., National Institute of Health. http://clinicaltrials.gov/ct2/show/NCT 00848042 (2016).
65 C. Iodice, A. Cervadoro, A. Palange, J. Key, S. Aryal, M. R. Ramirez, C. Mattu, G. Ciardelli, B. E. O'Neill, and P. Decuzzi, Enhancing photothermal cancer therapy by clustering gold nanoparticles into spherical polymeric nanoconstructs, Opt. Lasers Eng., 76, 74-81 (2016).   DOI
66 X. Cheng, R. Sun, L. Yin, Z. Chai, H. Shi, and M. Gao, Light-triggered assembly of gold nanoparticles for photothermal therapy and photoacoustic imaging of tumors in vivo, Adv. Mater., 29, 1604894 (2017).   DOI
67 Y. Wang, K. C. L. Black, H. Luehmann, W. Li, Y. Zhang, X. Cai, D. Wan, S. Y. Liu, M. Li, P. Kim, Z.-Y. Li, L. V. Wang, Y. Liu, and Y. Xia, Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment, AS Nano, 7, 2068-2077 (2013).   DOI
68 P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine, J. Phys. Chem. B, 110, 7238-7248 (2006).   DOI
69 N. R. Jana, Gram-Scale Synthesis of Soluble, Near-monodisperse gold nanorods and other anisotropic nanoparticles, Small, 1, 875-882 (2005).   DOI
70 W. Li and X. Chen, Gold nanoparticles for photoacoustic imaging, Nanomedicine (Lond.), 10, 299-320 (2015).   DOI
71 T. Wang, D. Halaney, D. Ho, M. D. Feldman, and T. E. Milner, Two-photon luminescence properties of gold nanorods, Biomed. Opt. Express, 4, 584-595 (2013).   DOI
72 L. Y. Bai, X. Q. Yang, J. An, L. Zhang, K. Zhao, M. Y. Qin, B. Y. Fang, C. Li, Y. Xuan, X. S. Zhang, Y. D. Zhao, and Z. Y. Ma, Multifunctional magnetic-hollow gold nanospheres for bimodal cancer cell imaging and photothermal therapy, Nanotechnology, 26, 315701 (2015).   DOI
73 M. Sun, F. Liu, Y. Zhu, W. Wang, J. Hu, J. Liu, Z. Dai, K. Wang, Y. Wei, J. Bai, and W. Gao, Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer, Nanoscale, 8, 4452-4457 (2016).   DOI
74 O. Betzer, R. Ankri, M. Motiei, and R. Popovtzer, Theranostic approach for cancer treatment: multifunctional gold nanorods for optical imaging and photothermal therapy, J. Nanomater., 2015, 7 (2015).
75 Y. Liu, M. Xu, Q. Chen, G. Guan, W. Hu, X. Zhao, X. Qiao, H. Hu, Y. Liang, H. Zhu, and D. Chen, Gold nanorods/mesoporous silica-based nanocomposite as theranostic agents for targeting near-infrared imaging and photothermal therapy induced with laser, Int. J. Nanomed., 10, 4747-4761 (2015).
76 C. Du, A. Wang, J. Fei, J. Zhao, and J. Li, Polypyrrole-stabilized gold nanorods with enhanced photothermal effect towards two-photon photothermal therapy, J. Mater. Chem. B, 3, 4539-4545 (2015).
77 M. R. Rasch, K. V. Sokolov, and B. A. Korgel, Limitations on the optical tunability of small diameter gold nanoshells, Langmuir, 25, 11777-11785 (2009).   DOI
78 S. C. Gad, K. L. Sharp, C. Montgomery, J. D. Payne, and G. P. Goodrich, Evaluation of the toxicity of intravenous delivery of auroshell particles (gold-silica nanoshells), Int. J. Toxicol., 31, 584-594 (2012).   DOI
79 C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, Nanoshell-enabled photonics-based imaging and therapy of cancer, Technol. Cancer Res. Treat., 3, 33-40 (2004).   DOI
80 S. Kalele, S. W. Gosavi, J. Urban, and S. K. Kulkarni, Nanoshell particles: synthesis, properties and applications, Curr. Sci., 91, 1038-1052 (2006).
81 J. Zhang, J. Li, N. Kawazoe, and G. Chen, Composite scaffolds of gelatin and gold nanoparticles with tunable size and shape for photothermal cancer therapy, J. Mater. Chem. B, 5, 245-253 (2017).   DOI
82 H. Yuan, C. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant, and T. Vo-Dinh, Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging, Nanotechnology, 23, 075102 (2012).   DOI
83 B. Sun, J. Wu, S. Cui, H. Zhu, W. An, Q. Fu, C. Shao, A. Yao, B. Chen, and D. Shi, In situ synthesis of graphene oxide/gold nanorods theranostic hybrids for efficient tumor computed tomography imaging and photothermal therapy, Nano Res., 10, 37-48 (2017).   DOI
84 B. Nikoobakht and M. A. El-Sayed, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method, Chem. Mater., 15, 1957-1962 (2003).   DOI
85 M. R. K. Ali, I. M. Ibrahim, H. R. Ali, S. A. Selim, and M. A. El-Sayed, Treatment of natural mammary gland tumors in canines and felines using gold nanorods-assisted plasmonic photothermal therapy to induce tumor apoptosis, Int. J. Nanomed., 11, 4849-4863 (2016).   DOI
86 Z. Li, H. Huang, S. Tang; Y. Li, X. F. Yu; H. Wang, P. Li, Z. Sun, H. Zhang, C. Liu, and P. K. Chu, Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy, Biomaterials, 74, 144-154 (2016).   DOI
87 Y. Liu, J. R. Ashton, E. J. Moding, H. Yuan, J. K. Register, A. M. Fales, J. Choi, M. J. Whitley, X. Zhao, Y. Qi, Y. Ma, G. Vaidyanathan, M. R. Zalutsky, D. G. Kirsch, C. T. Badea, and T. Vo-Dinh, A plasmonic gold nanostar theranostic probe for in vivo tumor imaging and photothermal therapy, Theranostics, 5, 946-960 (2015).   DOI
88 P. Qiu, M. Yang, X. Qu, Y. Huai, Y. Zhu, and C. Mao, Tuning photothermal properties of gold nanodendrites for in vivo cancer therapy within a wide near infrared range by simply controlling their degree of branching, Biomaterials, 104, 138-144 (2016).   DOI
89 A. Hatef, S. Fortin-Deschenes, E. Boulais, F. Lesage, and M. Meunier, Photothermal response of hollow gold nanoshell to laser irradiation: continuous wave, short and ultrashort pulse, Int. J. Heat Mass Trans., 89, 866-871 (2015).   DOI
90 L. A. Dombrovsky, V. Timchenko, M. Jackson, and G. H. Yeoh, A combined transient thermal model for laser hyperthermia of tumors with embedded gold nanoshells, Int. J. Heat Mass Trans., 54, 5459-5469 (2011).   DOI
91 Y. Ren, H. Qi, Q. Chen, and L. Ruan, Thermal dosage investigation for optimal temperature distribution in gold nanoparticle enhanced photothermal therapy, Int. J. Heat Mass Trans., 106, 212-221 (2017).   DOI
92 M. Borzenkov, A. Maattanen, P. Ihalainen, M. Collini, E. Cabrini, G. Dacarro, P. Pallavicini, and G. Chirico, Fabrication of inkjet-printed gold nanostar patterns with photothermal properties on paper substrate, ACS Appl. Mater. Interfaces, 8, 9909-9916 (2016).   DOI
93 P. Ghosh, G. Han, M. De, C. K. Kim, and V. M. Rotello, Gold nanoparticles in delivery applications, Adv. Drug Deliv. Rev., 60, 1307-1315 (2008).   DOI
94 J. Sudimack and R. J. Lee, Targeted drug delivery via the folate receptor, Adv. Drug Deliv. Rev., 41, 147-162 (2000).   DOI
95 X. Huang, X. Peng, Y. Wang, Y. Wang, D. M. Shin, M. A. El-Sayed, and S. Nie, A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands, ACS Nano, 4, 5887-5896 (2010).   DOI
96 L. Brannon-Peppas and J. O. Blanchette, Nanoparticle and targeted systems for cancer therapy, Adv. Drug Deliv. Rev., 56, 1649-1659 (2004).   DOI
97 R. Kunert and D. Reinhart, Advances in recombinant antibody manufacturing, Appl. Microbiol. Biotechnol., 100, 3451-3461 (2016).   DOI
98 W. Chen, S. G. Allen, A. K. Reka, W. Qian, S. Han, J. Zhao, L. Bao, V. G. Keshamouni, S. D. Merajver, and J. Fu, Nanoroughened adhesion-based capture of circulating tumor cells with heterogeneous expression and metastatic characteristics, BMC Cancer, 16, 614 (2016).   DOI