• Title/Summary/Keyword: chemical exfoliation

Search Result 132, Processing Time 0.028 seconds

Deterioration Assessment and Conservational Scientific Diagnosis of the Stone Pagoda in the Bunhwangsa temple, Gyeongju, Korea (경주 분황사석탑의 풍화훼손도 평가와 보존과학적 진단)

  • Yi, Jeong-Eun;Lee, Chan-Hee;Lee, Myeong-Seong
    • Journal of Conservation Science
    • /
    • v.18 s.18
    • /
    • pp.19-32
    • /
    • 2006
  • The stone pagoda of the Bunhwangsa temple made by piling small brick-shaped stones. The major rock forming stone bricks are andesites with variable genesis. Rock properties of the pagoda roof stone suffer partly including multiple peel-offs, exfoliation, decomposition like onion peels, cracks forming round lines and falling off stone pieces. The stylobates and tabernacles in all the four directions the pagoda are mostly composed of granitic rocks. Those rock properties are heavily contaminated by lichens and mosses with the often marks of inorganic contamination by secondary hydrates that are dark black or yellowish brown. Within the four tabernacles and northern pagoda body situated to relatively high humidity. There are even light gray precipitate looking like stalactites between the northern and western rocks of the body Their major minerals are calcite, gypsum and clays. The stone lion standing in the southeast and northeast side are alkali granite, while that in the southwest and northwest lithic tuff. Total rock properties of the pagoda are 9,708 pieces, among the all properties, fractured blocks are 11.0%, fall out blocks are 6.7% and covered blocks by precipitates are 7.0%, respectively. The pagoda has highly deteriorated the functions of the rock properties due to physical, chemical and biological weathering, therefore, we suggest that this pagoda has need to do long term monitoring and synthetic conservation researches.

  • PDF

Effect to the Copper System Pigments by the Nitrogen Dioxide(NO2) Gas (이산화질소(NO2)가 구리(Cu)계통 안료에 미치는 영향)

  • Kim, Ji Won;Lee, Hwa Soo;Lee, Han Hyeong;Kim, Myoung Nam;Kang, Dai Ill
    • Journal of Conservation Science
    • /
    • v.31 no.4
    • /
    • pp.403-409
    • /
    • 2015
  • Malachite and Azurite are the typical copper system pigments which used the mural paintings since ancient times. The mural painting is at risk for damages of the painting layer by atmosphere gas because it is exposed at external environment. In this study, it did experiment about an effect to Malachite and Azurite by environmental pollution gas($NO_2$, $CO_2$, $SO_2$) then analysis and estimate about test for pieces using mural painting colored that two pigments. As a result, Malachite and Azurite were changed on $NO_2$ but not changed $CO_2$ and $SO_2$. Especially as the concentration of $NO_2$ is increased, exfoliation of the pigment layer weave remarkably formed pores on the pigment particles on SEM, the phenomenon to be pieces were observed together with smaller particles. In the case of Malachite that were exposed to $NO_2$ gas, new compounds(Rouaite : dicopper (nitrate(V) trihydroxide, $Cu_2(NO_3)(OH)_3$)) was appeared by XRD analysis. Therefore, there had been able to verify the fact that the cause exfoliation and discoloration phenomena accompanied by chemical changes for Malachite and Azurite.

Evaluation of the Properties of Wrapping Material of Steel Pipe for Water Supply (수도용 강관의 도복장 재료특성 평가에 관한 연구)

  • Lee, Hyun-Dong;Lee, Ji-Eun;Kwak, Phill-Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.3
    • /
    • pp.331-338
    • /
    • 2008
  • Coal-tar enamel, blown asphalt and polyethylene have been used as wrapping materials of steel pipe in Korea. Currently, every manufacturer produces wrapped steel pipes with different materials and methods, and little research has been performed to get on wrapping methods and materials. In this research, properties of wrapping material of steel pipe used for water supply have been evaluated. All of the materials tested in this work were found to meet the standard. Among the wrapping materials of steel pipe tested, blown asphalt and coal-tar enamel were reasonable in price, and their mechanical properties were excellent. The quality of the wrapped steel pipes was being melted easily in organic solvent. When coated thick, the load of the steel pipes was higher than necessary. Tensile strength of cathode exfoliation and PE 3-layer wrapping method was excellent. The pulling intensity of T-Die PE 3-layer was stronger than PE fluidized in PE wrapping method. Cathode exfoliation area was smaller than PE fluidized. Mechanical property and thermo-property of T-Die PE 3-layer were excellent and its anti-chemical property was great. Liquid epoxy can change the property of coating materials depending on the hardening condition and resin selection. Polyurethane used in this test showed a less adhesive strength with steel pipes than epoxy. Moisture absorbance rate was higher than Epoxy's, however. To utilize polyurethane as wrapping materials, basic property of the matter should be improved followed by finding the best suited coating condition. The method of PE 3-layer by extrude method appeared to be the best in this study. However, identification of other wrapping materials requires further additional tests.

Material Characteristics and Deterioration Assessment for Multi-storied Round shape Stone Pagoda of Unjusa Temple, Hwasun, Korea (화순 운주사 원형다층석탑의 재질특성과 훼손도 평가)

  • Park, Sung Mi;Lee, Myeong Seong;Kim, Jae Hwan;Lee, Chan Hee
    • Korean Journal of Heritage: History & Science
    • /
    • v.45 no.1
    • /
    • pp.86-101
    • /
    • 2012
  • The constituting rocks of Multi-storied Round shape stone Pagoda of Unjusa Temple are lithic tuff and rhyolite tuff breaccia which show green or grey and also rock fragment with poor roundness are present in the structure. lithic tuff is composed of feldspar and quartz which are glassy texture and cryptocrystalline and also micro crystalline are scattered. phenocryst quartz and feldspar in the substrate composed of feldspar and opaque minerals are found in rhyolite tuff breaccia. dust, exfoliation, cavity, fracture and crack are observed in all the stone of the pagoda and the result of Infrared Thermography shows partial inter cavities have developed severely which may cause further exfoliation. In addition, a great deal of various grey, green, and yellow brown lichen as well as bryophyte are present at the upper part of eastern and western roof stone located above the third floor. Discolors remarkably shown at stereobate and roof stone are identified as inorganic pollutants such as manganese oxide, iron oxide and iron hydroxide. The stone of the pagoda of the Chemical Index of Alteration (CIA) and the Weathering Potential Index (WPI) are 55.69 and 1.12 respectively and this corresponds to a highly weathered stage. The measured values, average ultrasonic velocity 2,892m/s, coefficient of weathering 0.4k and compressive strength $1,096kg/cm^3$, suggest that the rock strength and durability are weakened.

Conservation Treatment and Material Analysis of Amber Relics Found in the Huryeongtong of Geumsansa Temple (금산사 후령통(候鈴筒) 내 발견 호박유물의 과학적 분석과 보존처리)

  • Ham, Chul-hee;Kang, So-yeong
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.4
    • /
    • pp.78-89
    • /
    • 2013
  • For safe conservation treatment of damaged accessory relics that were unearthed, the quality of the material should be accurately identified through a nondestructive analysis and failure analysis. This study provides the basic conservational scientific data regarding material analyses and conservation treatment that were conducted for 11 relics, including amber and agate that were discovered during the repair of Geumsansa Temple's Hall of Maitreya Buddha and Left Attendant Buddhas in June 2008. An ultraviolet analysis, SEM-EDS analysis and FT-IR microscope analysis revealed that the physical and chemical characteristics of the 11 relics are the same as those of amber. It is inferred that the cracks and exfoliation of the surface of most amber relics is attributable to darkening of the color due to C=C bond oxidation. It is also assumed that cracks and exfoliation occurred from the weathered layer on the amber surface. As such, it is appropriate to engage in conservation treatment of the damaged amber relics by using $Paraloid^{(R)}$ B67 reinforcing agent that is diluted in nonpolar solvent. The greatest care is needed for future handling of organic artifacts.

Organic/inorganic Hybrid Electrolytes for the Application of Direct Methanol Fuel Cell (DMFC) - Preparation and Properties of Sulfonated SEBS (SSEBS)-clay Hybrid Membranes - (직접메탄올 연료전지용 유무기 하이브리드 전해질 - 술폰화된 SEBS (SSEBS)-clay 하이브리드 막의 제조 및 물성 -)

  • Nam Sang Yong;Park Byung-Kil;Kong Sung-Ho;Kim Young Jin
    • Membrane Journal
    • /
    • v.15 no.2
    • /
    • pp.165-174
    • /
    • 2005
  • Sulfonated poly(styrene-ethylene-butadiene-styrene) (SSEBS)-clay hybrid membranes were prepared by solution method. In the preparation of hybrid membrane, the amount of clay content was fixed to 5 phr and montmorillonite (MMT) was fully exfoliated by the SEBS and it was confirmed by X-ray diffraction method. D-spacing of the characteristic peak from MMT plate in WAXD was fully diminished. Gas permeability, mechanical properties and thermal properties of the SSEBS-clay hybrid membranes were investigated. Gas permeability through the SSEBS-clay hybrid membranes decreased due to increased tortuosity made by exfoliation of clay in SEBS.

Weathering Characteristics of Sedimentary Rocks Affected by Periodical Submerging (주기적으로 침수되는 퇴적암의 풍화특성)

  • 이석훈;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.23-35
    • /
    • 2004
  • The weathering characteristics of periodically submerged sedimentary rocks in the Sayeon dam, Ulsan was examined by field work, electron probe micro-analysis, X-ray diffraction, and X-ray fluorescence spectrometry. Analysis of fracture zone and exfoliation showed the submerged sedimentary rocks have undergone severe mechanical weathering. Mechanical weathering in the water-rock interface accelerated chemical weathering, such as dissolution and alteration of the most of minerals except for quartz in the weathering zone. The dissolution of carbonates specially calcite, is remarkable creating the cavities, whereas formation of minerals including clay minerals is not active. The sedimentary rocks have been periodically submerged for a certain period of time, and have repeated freezing and thawing. This mechanical weathering favored infiltration, which accelerated mineral dissolution. The high content of easily soluble carbonate of the sedimentary rocks is likely the major cause of intense chemical weathering. The dissolved elements within the infiltrated water interrupted the occurrence of clay and weathering minerals, and expend fractures by infiltrated water accelerated weathering process.

A Study on Weathering Processes of Tafoni in Mt. Cheonsaeng, Gumi, the Republic of Korea: Interpretation of Water Content Data using GIS Interpolation Analysis (구미 천생산 타포니의 풍화과정에 관한 연구: GIS 보간법을 활용한 함수율 측정 자료의 해석)

  • Shin, Jae-Ryul;Lee, Jin-Kook;Choo, Chang-Oh;Park, Kyung-Gun
    • Journal of the Korean earth science society
    • /
    • v.36 no.6
    • /
    • pp.543-552
    • /
    • 2015
  • This study examines the processes of rock weathering and tafoni formation targeting tafoni at Mt. Cheonsaeng, Gumi-si, Gyeongsangbuk-do. In the study area, a frequency of tafoni is high in conglomerate and conglomeratic sandstone among regional sedimentary rocks, which means that an initial stage of the formation begins a breakaway of gravel from bedrock and also exfoliation from rock surface. Geomorphologically tafoni have intensively been developed at the southfacing slope with exposed rocks, which means that its formation was favorably controlled by environmental conditions including strong influences of mechanical weathering in winter and chemical weathering in summer times. The results of measuring water content at a tafoni-bearing rock surface using GIS interpolation analysis indicate that moisture rate in/around tafoni is higher than the periphery. Thus, it is considered that moisture distribution at a rock surface plays a role in its formation. Analysis of percipitation and secondary minerals induced by chemical weathering is in progress.

Thermal Chemical Vapor Deposition법으로 성장된 MoS2 박막의 물리적 특성 분석

  • Chu, Dong-Il;Lee, Dong-Uk;Kim, Eun-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.376.1-376.1
    • /
    • 2014
  • 그래핀은 차세대 2차원 물질로서 지금까지 활발히 연구되어 왔으나 밴드갭이 없기 때문에 전자소자로서의 응용이 매우 제한적이다. 최근에 그래핀을 대체할 수 있는 물질로서 Transition Metal Dichalcogenides (TMDs)가 주목을 받고 있다. 특히, TMDs 중에서 $MoS_2$는 bulk일 때 indirect한 1.2 eV인 밴드 갭을 갖고 있으나, layer가 줄어들면서 direct한 1.8 eV인 밴드갭을 가진다. 국내외 여러 연구 그룹에서 $MoS_2$를 이용하여 제작한 Field Effect Transistor (FET)는 high-$\small{K}$ gate가 산입되지 않은 경우에 on-off ratio와 mobility가 각각 $10^6$와 약 $3cm^2/Vs$로 나타나고 있다. 이와 같이 아주 우수한 전기적, 광학적 특성을 갖는 소자 응용성을 가지고 있다. 최근까지의 연구결과들은 대부분 mechanical exfoliation method (MEM) 로 제작된 $MoS_2$ monolayer를 이용하였으나, 이 방법은 large scale 및 layer controllable에는 적합하지 않다. 본 연구에서는 대면적의 집적회로 응용에 적합한 chemical vapor deposition법을 이용하여 $MoS_2$를 성장하였다. 높은 결정성을 위해 sulphur (powder purity 99.99%)와 molybdenum trioxide(powder purity 99.9%)를 이용하고, Ar 가스 분위기에서 sulphur powder 및 molybdenum trioxide powder를 각각 $130^{\circ}C$$1000^{\circ}C$로 유지하며 $MoS_2$ 박막을 성장하였다. 성장된 $MoS_2$ 박막은 Atomic force Microscopy (AFM)을 통해 박막의 단차와 roughness을 확인하였다. 또한, X-ray Diffraction (XRD) pattern 분석으로 박막의 결정성을 확인하였으며, Raman Spectroscopy, X-ray Photoelectron Spectroscopy (XPS), Photoluminescence (PL) 측정으로 광학적 특성을 분석하였다.

  • PDF

Synthesis and Characterization of Large-Area and Highly Crystalline Molybdenum Disulphide Atomic Layer by Chemical Vapor Deposition

  • Park, Seung-Ho;Kim, Yooseok;Kim, Ji Sun;Lee, Su-Il;Cha, Myoung-Jun;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.356.1-356.1
    • /
    • 2014
  • The Isolation of few-layered transition metal dichalcogenides has mainly been performed by mechanical and chemical exfoliation with very low yields. in particular, the two-dimensional layer of molybdenum disulfide (MoS2) has recently attracted much interest due to its direct-gap property and potential application in optoelectronics and energy harvesting. However, the synthetic approach to obtain high-quality and large-area MoS2 atomic thin layers is still rare. In this account, a controlled thermal reduction-sulfurization method is used to synthesize large-MoOx thin films are first deposited on Si/SiO2 substrates, which are then sulfurized (under vacuum) at high temperatures. Samples with different thicknesses have been analyzed by Raman spectroscopy and TEM, and their photoluminescence properties have been evaluated. We demonstrated the presence of mono-, bi-, and few-layered MoS2 on as-grown samples. It is well known that the electronic structure of these materials is very sensitive to the number of layer, ranging from indirect band gap semiconductor in the bulk phase to direct band gap semiconductor in monolayers. This synthetic approach is simple, scalable, and applicable to other transition metal dichalcogenides. Meanwhile, the obtained MoS2 films are transferable to arbitrary substrates, providing great opportunities to make layered composites by stacking various atomically thin layers.

  • PDF