• Title/Summary/Keyword: chemical digestion

Search Result 316, Processing Time 0.038 seconds

Effect of seeding ratio on acidogenic biokinetics in high ammonia concentration

  • Yang, Keun-Young;Shin, Seung-Gu;Hwang, Seok-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.65-66
    • /
    • 2005
  • Anaerobic digestion is one of the well-known methods for biological treatment handling of concentrated organic matter such as swine $wastewater.^{1)} The anaerobic digestion can reduce organic loading but also hydrolyze non-biodegradable organic $matter.^{2)}$ The feces from the scrapper-type barn are usually collected to make compost and the urine is discarded with swine-slurry wastewater by ocean-dumping or treated by biological methods. The lagoon, aerobic digestion, anaerobic digestion, SBR, $A^{2}/O$, and UCT have been applied for treating swine $wastewater.^{3)} In this study, as a result of the analysis of swine wastewater, the total and soluble chemical oxygen demand was 130g/L and 60g/L, respectively. And the volatile fatty acid as chemical oxygen demand equivalent was 45g/L, which was 75% of soluble chemical oxygen demand. Before everything else, ammonia nitrogen concentration was 6.5 g/L. From biochemical acidogenic potential test, it was concluded that the enhanced acidification process to manage swine waste should be operated in the ammonia nitrogen concentration of less than 1.2 g/L. In the result of seeding ratio experiments with artificial $wastewater^{4)}, the lag period of acidogens was taken the long time because of the inhibition by the $ammonia^{5)}$, however no difference of period by the seeding ratio was not shown. The Haldane-based biokinetics were also evaluated using a method of fourth order Runge-Kutta $approximation.^{6,7)}$ The nonlinear least squares (NLLS) method with a 95% confidence interval was also used. The ranges of maximum microbial growth rate, ${/mu_{max}}$, and half saturation coefficient, $K_{s}$, for acidogenesis of various seeding ratio with artificial wastewater were 6.1 ~ 12.6 $d^{-1}$ and 45,000 ~ 53,500 mg glucose/L, respectively. Also, the methanogenic microbial yield coefficient, Y, and microbial decay rate coefficient, $k_{d}$, and inhibition substrate concentration, $K_{si}$, for the reactors were determined to be 0.32 ~ 0.465 ${/mu}g$/mg glucose; 0.42 ~ 1.01 $d^{-1}$ and 51,500 ~ 55,600 mg glucose/L, respectively.

  • PDF

Effect of Additives and Fermentation Periods on Chemical Composition and In situ Digestion Kinetics of Mott Grass (Pennisetum purpureum) Silage

  • Nisa, Mahr-un;Touqir, N.A.;Sarwar, M.;Khan, M. Ajmal;Akhtar, Mumtaz
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.6
    • /
    • pp.812-815
    • /
    • 2005
  • This study was conducted to see the influence of additives and fermentation periods on Mott grass silage (MGS) characteristics, its chemical composition and to compare the digestion kinetics of Mott grass (MG) and MGS in Nili buffaloes. Mott grass chopped with a locally manufactured chopper was ensiled using two additives, cane molasses and crushed corn grains each at 2, 4 and 6% of forage DM for 30 and 40 days in laboratory silos. The pH, lactic acid concentration, dry matter (DM), crude protein and fiber fractions of MGS were not affected by the type or level of additive and fermentation periods. The non-significant pH lactic acid concentration, and chemical composition of MGS indicated that the both molasses and crushed corn were utilized at similar rate for the growth of lactic acid bacteria and production of organic acids. The MG ensiled with molasses at 2% of fodder DM for 30 days was screened out for in situ digestion kinetics in Nili buffaloes. Ruminal DM and neutral detergent fiber (NDF) degradabilities of MGS were significantly (p<0.05) higher than that of MG. The DM and NDF rate of degradation, lag time and extent of degradation was nonsignificant between MGS and MG. The higher ruminal degradation of DM and NDF of MGS than MG was probably a reflection of fermentation of MG during ensilation that improved its degradability by improving the availability of easily degradable structural polysaccharides to ruminal microbial population. The results in the present study have indicated that MG ensiled with either 2% molasses or 2% crushed corn for 30 days has better nutritive value for buffalo.

TREATMENT OF HIGH-CONCENTRATION SWINE WASTEWATER BY ANAEROBIC DIGESTION AND AN AQUATIC PLANT SYSTEM

  • Kim, B.U.;Kwon, J.H.
    • Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.134-142
    • /
    • 2006
  • The treatment of high-strength swine wastewater by anaerobic digestion combined with an aquatic plant system was investigated. Anaerobic digestion of swine wastewater gave volatile solids (VS) removal efficiencies of 43.3%, 52.1% and 54.5% for hydraulic retention times (HRTs) of 20, 30, 40 days, respectively. The removal efficiencies of VS, total chemical oxygen demand (TCOD) and soluble chemical oxygen demand (SCOD) decreased with increasing VS volumetric loading rate (VLR). Higher organic removal efficiency was observed at longer HRTs for the same VS volumetric loading rate. As VS volumetric loading rate increased, biogas production increased and the methane content of the biogas decreased. Experiments using duckweed (Lemna species) as an aquatic macrophyte gave the following results. In the case of nitrogen, removal efficiency was above 60% and effluent concentration was below 10.0 mg/L when the influent ammonia-N loading was about $1.0\;g/m^2/day$. In the case of phosphorus, removal efficiency was above 55% and effluent concentration was below 2.0 mg/L when the influent $PO_4$-P loading was about $0.15\;g/m^2/day$. In addition, crude protein and phosphorus content of duckweed biomass increased from 15.6% to 41.6% and from 0.8% to 1.6%, respectively, as the influent nutrient concentration increased. The treatment of high-strength swine wastewater by anaerobic digestion combined with an aquatic plant system offers good performance in terms of organics and nutrient removal for relatively low operation and maintenance costs. The results indicate that under appropriate operational conditions, the effluent quality is within the limits set by Korean discharge criteria.

Sludge Solubilization by Pre-treatment and its Effect on Methane Production and Sludge Reduction in Anaerobic Digestion (전처리 방법에 따른 슬러지 가용화가 혐기소화에서 메탄 생산과 슬러지 감량에 미치는 영향)

  • Kim, Dong-Jin;Kim, Hye-Young
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.103-109
    • /
    • 2010
  • Anaerobic digestion has been widely used for the treatment of sludge, which is generated from the municipal and industrial wastewater treatment, for its volume reduction and methane production. Many researches on sludge pre-treatment have been carried out in order to enhance the performance of anaerobic digestion by increasing the hydrolysis of sludge which is the rate limiting step of anaerobic digestion. In this study, the effect of pre-treatment on sludge hydrolysis(solubilization), methane production and sludge reduction by anaerobic digestion after thermal, ultrasonic, and thermal-alkali sludge treatment were compared. Thermal-alkali treatment showed 67 and 70% solubilization with municipal and industrial wastewater sludge, respectively, while ultrasonic treatment and thermal treatment gave similar solubilization efficiency of 40% or more. Methane content of the anaerobic digestion gas reached 45~70% and pretreated sludge gave higher methane content than the control sludge. Methane production of thermal, ultrasonic, and thermal-alkali pre-treatment gave 2.6, 2.7, 3.5 times of municipal control sludge and 3.5, 4.1, 4.2 times of industrial control sludge, respectively. Sludge reduction of pre-treated sludge after anaerobic digestion gave 5~19% point higher than that of control sludge, and thermal-alkali treatment showed higher reduction efficiency than thermal and ultrasonic treatment. The results proved that pre-treatment contributed significantly not only for the methane production but also for the cost reduction of sludge treatment and disposal, and thermal-alkali treatment gave the best performance for the sludge treatment.

Development of a Temperature Controller for Microwave-assisted Digestion System for Agricultural Samples (농식품 시료 전처리를 위한 마이크로웨이브 분해기용 온도 제어장치 개발)

  • Mo, Chang-Yeon;Kim, Gi-Young;Kim, Hak-Jin;Kim, Yong-Hun;Yang, Kil-Mo;Lee, Kang-Jin
    • Journal of Biosystems Engineering
    • /
    • v.34 no.5
    • /
    • pp.371-376
    • /
    • 2009
  • Microwave digestion is a preferred pretreatment method for agricultural samples because of its quick chemical reaction and minimum loss of analytes. In this research, a feedback temperature controller was developed to control the temperature inside a vessel for the microwave-assisted digestion system. An existing industrial microwave oven was fitted with the temperature controller for controlling inside temperature of the vessel. Four control methods, On/Off, proportional (P), proportional integral (PI), and proportional integral derivative (PID) were used and compared. Experimental results showed that PID control produced best temperature control performance. The PID controller could maintain the temperature of water sample and rice sample in the digestion system with error range of $-2.5{\sim}3.3^{\circ}C$ and $-1.9{\sim}0.5^{\circ}C$ at set temperature of $170^{\circ}C$, respectively.

Effects of hydrothermal pretreatment on methane potential of anaerobic digestion sludge cake of cattle manure containing sawdust as bedding materials

  • Jun-Hyeong Lee;Chang-Hyun Kim;Young-Man Yoon
    • Animal Bioscience
    • /
    • v.36 no.5
    • /
    • pp.818-828
    • /
    • 2023
  • Objective: The purpose of this study was to analyze the effect of the hydrothermal pretreatment of anaerobic digestion sludge cake (ADSC) of cattle manure on the solubilization of organic matter and the methane yield to improve the anaerobic digestion efficiency of cattle manure collected from the sawdust pens of cattle. Methods: Anaerobic digestion sludge cake of cattle manure was thermally pretreated at 160℃, 180℃, 200℃, and 220℃ by a hydrothermal pressure reactor, and the biochemical methane potential of ADSC hydrolysate was analyzed. Methane yield recovered by the hydrothermal pretreatment of ADCS was estimated based on mass balance. Results: The chemical oxygen demand solubilization degree (CODs) of the hydrothermal hydrolysate increased to 63.56%, 67.13%, 70.07%, and 66.14% at the hydrothermal reaction temperatures of 160℃, 180℃, 200℃, and 220℃, respectively. Considering the volatile solids content obtained after the hydrothermal pretreatment, the methane of 10.2 Nm3/ton-ADSC was recovered from ADSC of 1.0 ton, and methane yields of ADSC hydrolysate increased to 15.6, 18.0, 17.4, and 17.2 Nm3/ton-ADSC. Conclusion: Therefore, the optimal hydrothermal reaction temperature that yielded the maximum methane yield was 180℃ based on mass balance, and the methane yield from cattle manure containing sawdust was improved by the hydrothermal pretreatment of ADSC.

BEAD BASED CHEMICAL REACTION SYSTEM USING TEMPERATURE AND FLUID CONTROL FOR CANCER DETECTION (유체와 온도 조절을 이용한 생화학 물질 반응용 마이크로칩의 개발)

  • Kim, Min-Su;Lee, Bo-Rahm;Yoon, Hyo-Jin;Kim, Byung-Gee;Lee, Yoon-Sik;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1466-1467
    • /
    • 2008
  • We describe here a novel micro total analysis system for the purification and identification of the affinity-captured proteins. Also we demonstrated the mass analysis of the Carcinoembrionic antigen (CEA) and Alpha femtoprotein which were chosen as the target cancer marker. For MALDI-TOF analyses, the proteins should to be separated from a protein mixture and be concentrated when needed. This procedure usually takes a long time even before protease-digested samples are to be obtained from them. Here, we describe integrated and efficient micro chip for protein purification and digestion for MALDI-TOF analyses. At first, disease protein is purified by passing the micro chamber from a protein mixture or human whole serum and released from the micro affinity beads by thermal heating. Purified protein is then transfer to the hole for trypsin digestion. The final sample is analyzed by MALDI-TOF. All the processes could be finished successfully within one hour, which renders MALDI-TOF analyses of a target protein quite simple.

  • PDF

Sustainable anaerobic digestion of euphorbiaceae waste for biogas production: Effects of feedstock variation

  • Kamaruddin, Mohamad Anuar;Ismail, Norli;Fauzi, Noor Fadhilah;Alrozi, Rasyidah;Hanif, Mohamad Haziq;Norashiddin, Faris Aiman
    • Advances in environmental research
    • /
    • v.10 no.1
    • /
    • pp.87-103
    • /
    • 2021
  • Anaerobic digestion (AD) refers to the biological process which can convert organic substrates to biogas in the absence of oxygen. The aim of this study was to determine the capability of feedstock to produce biogas and to quantify the biogas yield from different feedstocks. A co-digestion approach was carried out in a continuous stirred tank reactor operated under mesophilic conditions and at a constant organic loading rate of 0.0756 g COD/ L.day, with a hydraulic retention time of 25 days. For comparison, mono-digestion was also included in the experimental work. 2 L working volumes were used throughout the experimental work. The seed culture was obtained from composting as substrate digestion. When the feedstock was added to seeding, the biogas started to emit after three days of retention time. The highest volume of biogas was observed when the seeding volume used for 1000mL. However, the lowest volume of biogas yield was obtained from both co-digestion reactors, with a value of 340 mL. For methane yield, the highest methane production rate was 0.16 L CH4/mg. The COD with yield was at 8.6% and the lowest was at 0.5%. The highest quantity of methane was obtained from a reactor of Euphorbiaceae peel with added seeding, while the lowest methane yield came from a reactor of Euphorbiaceae stems with added seeding. In this study, sodium bicarbonate (NaHCO3) was used as a buffering solution to correct the pH in the reactor if the reactor condition was found to be in a souring or acidic condition.

Matrix effect on the Determination of Inorganic Priority Pollutants in Sludges (오니 시료중의 무기 Priority Pollutants의 분석 과정에 미치는 매질의 영향)

  • Lee, Huk-Hee;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.297-304
    • /
    • 1998
  • The three analysis methods, EPA method 3050, the method offered by Ministry of Environment in Korea, and modified method corrected in this laboratory, were studied to investigate the effect of matrix on the analysis of inorganic priority pollutants. 7 inorganic priority pollutants(Ni, Cr, Cu, Zn, Pb, Cd, Hg) were spiked to the plating, leather, paper, electric, and dye sludges. Mean recovery of the elements except Hg was 95.5% when the procedure of EPA method was applied. However, recovery by the two other extraction methods showed 11.1% and 27.7%, respectively. Digestions were done by MDS (microwave digestion system) and $HNO_3+HClO_4$ methods. To study organic and inorganic matrix effect, samples were made by adding triethanol amine as a organic matrix and $FeCl_3{\cdot}6H_2O$+$AlCl_3{\cdot}6H_2O$ as a inorganic matrix, respectively. The extracts were analyzed by AAS and HG-AAS. Mean recovery of the elements by the $HNO_3+HClO_4$ procedure, except Hg, gave better result than that of the MDS method. Mean recovery of elements was decreased when organic and inorganic matrices were added in the sludge samples. The procedure of MDS and $HNO_3+HClO_4$ digestion gave higher recoveries than that of direct analysis. In general, the results of the studies showed a significant matrix effect on the inorganic priority pollutants analysis in sludges.

  • PDF

Effects of diverse Pre-treatment methods on the sludge digestion and methane production in combined mesophilic anaerobic and thermophilic aerobic sludge digestion process (다양한 전처리에 따른 중온혐기-고온호기 복합 슬러지 처리공정의 슬러지 처리효율 및 메탄 생성량 변화)

  • Ha, Jeong Hyub;Park, Jong Moon;Park, Sang Kyu;Cho, Hyun Uk;Jang, Hyun Min;Choi, Suk Soon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.3
    • /
    • pp.43-52
    • /
    • 2013
  • In this study, various influent sludge pre-treatment methods were adopted to investigate their effects on the sludge digestion and methane production in combined mesophilic anaerobic and thermophilic aerobic sludge digestion process. A lab-scale sewage sludge digestion process was operated during 4 phases using different feed sludge pre-treatment strategies. In phase 1, feed sludge was supplied without any pre-treatment. In contrast, in phases 2, 3 and 4, thermal, thermal-alkaline and long time alkaline treatment (7 days) were applied to influent sludge, respectively. With sludge pre-treatment, TCOD removal was drastically increased from 44% to 76% from phases 1 to 4, respectively. Also, pre-treatment of feed sludge significantly improved the methane production rate of MAD, showing an increment from 101 to 165-256mL/L/day. Meanwhile, TCOD removal and methane production at phase 4 were not increased, compared to those at phase 3. Based on the experimental results, it was concluded that pre-treatment of feed sludge significantly increases the efficiency of sludge digestion and thermal-alkaline method was the most effective method among the pre-treatment methods examined.