• Title/Summary/Keyword: chemical damage

Search Result 1,204, Processing Time 0.026 seconds

Manufacturing of a Treatment Agent for Corrosion Oxides of Iron Relics (철기 유물 부식 산화물 처리제의 제조)

  • Yang, Eun Hee;Han, Won-Sik;Choi, Kwang-Sun;Hong, Tae-Kee
    • Korea Science and Art Forum
    • /
    • v.30
    • /
    • pp.251-261
    • /
    • 2017
  • Metal is a material that has exerted a lot of influence on the development of human cultures, and has closely connected with our life from the past to the present. Types of metal we have used from the prehistoric times are varied, and iron relics take the largest percentage of metal relics excavated in our country. The biggest threat to the existence of iron relics ranging from excavated relics to the ones that are transmitted is the process of corrosion, and physical removal has been used the most for removing corroded oxides. For details for removal of corrosion oxides, this thesis aimed to research on the chemical corrosion oxides remover that protects parent material of iron relics but treats corrosion oxides only. For safe and effective removal of corrosion oxides of iron relics, this study was conducted aiming at finding the possibility of and optimized composition for removal of iron relics corrosion oxides by manufacturing new acid, alkaline and neutral oxides removers and changing their composition variously, exploring the possibility by applying the agents to modern relics. The results of this study are as follows: First, the acid solution removed only some part of corrosive substance oxidized on the surface of metal specimen. Second, the application of each of alkaline and neutral solution resulted in remaining black-colored corrosive substance, but it was removed when the quantity of the solution and the duration of application are increased. Third, All the three solutions did not cause any damage to parent material in the course of application, and showed the result that they are capable of removing unstable oxide layer while protecting parent material and stable corrosive layer as the solutions would be able to deal with situation by a relic only through the control of concentration of solution and duration of application.

Interpretation of Physical Weathering and Deterioration Mechanism for Thermal Altered Pelitic Rocks: Ulju Cheonjeon-ri Petroglyph (열변질 이질암의 물리적 풍화작용과 손상메커니즘 해석: 울주 천전리 각석)

  • Chan Hee Lee;Yu Gun Chun
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.629-646
    • /
    • 2023
  • Host rock of Cheonjeon-ri petroglyph is shale belonging to the Daegu Formation of Cretaceous Gyeongsang Supergroup. The rocks were hornfelsified by thermal alteration, and shows high density and hardness. The petroglyph forms weathered zone with certain depth, and has difference in mineral and chemical composition from the unweathered zone. As the physical deterioration evaluations, most of cracks on the surface appear parallel to the bedding, and are concentrated in the upper part with relatively low density. Breakout parts are occurred in the upper and lower parts of the petroglyph, accounting for 6.0% of the total area and occurs to have been created by the wedging action of cracks crossing. The first exfoliation parts occupying the surface were 23.8% of the total area, the second exfoliations covered with 9.3%, and the exfoliation parts with three or more times were calculated as 3.4%. It is interpreted that this is not due to natural weathering, and the thermal shock caused by the cremation custom here in the past. As the ultrasonic properties, the petroglyph indicates highly strength in the horizontal direction parallel to bedding, and the area with little physical damage recorded mean of 4,684 m/s, but the area with severe cracks and exfoliations showed difference from 2,597 to 3,382 m/s on average. Physical deterioration to the Cheonjeon-ri petroglyph occurred to influence by repeated weathering, which caused the rock surface to become more severe than the inside and the binding force of minerals to weaken. Therefore, it can be understood that when greater stress occurs in the weathered zone than in the unweathered zone, the relatively weathered surface loses its support and exfoliation occurs.

Applicability of Carbon Dioxide as an Attractant for Termites in Republic of Korea (한국 서식 흰개미의 유인물질로서 이산화탄소(CO2)의 적용 가능성)

  • Tae Heon Kim;Man Hee Lee;Hyun Ju Lee;Yong Jae Chung
    • Korean journal of applied entomology
    • /
    • v.62 no.3
    • /
    • pp.171-182
    • /
    • 2023
  • In the Republic of Korea, many of the wooden architectural heritage are located in forests and, therefore, are vulnerable to termite damage. In Korea, the predominant approach to termite control involves chemical control methods using termiticides. The rapid attraction of termites to termiticides is essential to shorten the control period. The current study investigated the attraction of Korean termites to carbon dioxide and the appropriate concentration of carbon dioxide required for effective attraction by conducting a basic experiment on the attracting effect in the underground environment. The results showed that carbon dioxide is effective for attracting termites, and an effective concentration range of 10% or less was selected. Additionally, this study established the potential and applicability of carbon dioxide as an attractant in the control of subterranean termites. Future studies should aim at conducting field studies on the application of carbon dioxide to improve the termite control effect, particularly in preserving wooden architectural heritage.

Insecticidal Effect of Moutan cortex radicis Extract for Control the Western Flower Thrips, Frankliniella occidentalis, on Greenhouse Pepper (시설 고추에 발생하는 꽃노랑총채벌레 방제를 위한 목단피 추출물의 살충효과)

  • Mi Hye Seo;Kyung Hye Seo;Kyung San Choi;Sun-Young Lee;Jung Beom Yoon;Jung-Joon Park
    • Korean journal of applied entomology
    • /
    • v.62 no.4
    • /
    • pp.355-363
    • /
    • 2023
  • In addition to causing direct feeding damage to a variety of greenhouse crops, Frankliniella occidentalis also inflicts indirect harm by facilitating the transmission of the tomato spotted wilt virus. Historically, the prevention of F. occidentalis infestations has relied heavily on pesticide use. However, this approach has led to significant side effects in agricultural ecosystems, including the development of pest resistance and challenges in effective prevention. In response to these issues, research has been directed towards identifying alternative substances that circumvent the tolerance developed against chemical pesticides. Extracts from sixty-seven medicinal plants were prepared by soaking them in water for 24 hours at room temperature. These extracts were then applied to adult F. occidentalis, with particular attention to moutan extract treatment. This treatment demonstrated a 100% insecticidal effect on the first day. The moutan extract, specifically, was prepared using 50% ethanol, after which the ethanol and water were removed via a rotary evaporator. The resultant product was then lyophilized into a powder and used after being diluted with water. In indoor experiments, a 40% diluted solution was sprayed onto F. occidentalis, exhibiting a 100% insecticidal effect 24 hours post-treatment. Furthermore, a pot test indicated a 78% insecticidal effect on the first day of application. Ongoing research includes the analysis of active substances that demonstrate exceptional insecticidal properties and the conduct of on-site validation tests. The application of the aforementioned extract is anticipated to be effective in the prevention of F. occidentalis infestations.

Seasonal occurrence of mushroom fly infestation and analysis of the effects of preemptive pest control technology: A case study in button mushroom farms in Buyeo County (부여지역 양송이농가 버섯파리 발생소장 및 사전방제기술 적용효과)

  • Hye-Sung Park;Seong-Yeon Jo;Tai Moon Ha
    • Journal of Mushroom
    • /
    • v.21 no.4
    • /
    • pp.266-269
    • /
    • 2023
  • This study aimed to address the increasing demand for technologies preventing mushroom fly damage. By monitoring the annual occurrence patterns of pests over several years and accumulating data, we conducted an analysis to evaluate the efficacy of preventive measures applied before the surge in mushroom fly infestation, typically observed in May. For preemptive control, physical measures involved installing air curtains at cultivation facility entrances and placing sticky traps and insect traps around entry points to block external entry and reduce internal insect density. Additionally, we applied an organic agricultural material, Dalmatian chrysanthemum extract, weekly alongside chemical control measures. To assess the reduction in mushroom fly populations, yellow sticky traps (15×25 cm) were placed at three locations within the mushroom cultivation facility, and the occurrence patterns before and after implementing preventive measures were compared. Compared to conventional practices, the application of preventive techniques resulted in a significant reduction, with a 60% decrease from 15 levels of mushroom flies/m2 to 6 levels of mushroom flies/m2 in May and a 40% decrease from 10 levels of mushroom flies/m2 to 6 levels of mushroom flies/m2 in June. While achieving over 50% efficacy during the peak mushroom fly season with preventive measures, we identified complementary actions such as blocking external sources (gaps in cultivation facility doors) and maintaining cleanliness around cultivation facilities (proper disposal of spent substrate) for further improvement. Comprehensive analysis and safety studies, including correlation analysis with contaminants and pathogens, are recommended to ensure the widespread adoption of mushroom fly preventive techniques for safe and stable mushroom production in the agricultural sector.

A Study on the Impact of Protection Layers on Workplace Workers in the Event of a Toxic Substance Release (독성물질 누출 시 방호계층 적용에 따른 사업장 내 근로자 피해 영향 연구)

  • Sun Jae Hwang;Joon Won Lee;Deuk Hwan Kim;Sang Chan Choi
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.43-49
    • /
    • 2023
  • Hydrofluoric acid is a less acidic substance than hydrochloric acid, nitric acid, and sulfuric acid, but it is one of the most dangerous substances for humans. In recent years, it has become an indispensable substance in industries such as chemical plants and the semiconductor industry, and although it is a threat to the human body, its use is increasing for various purposes, and the amount of use is constantly increasing due to the expansion and development of the industry. The dangers of hydrogen fluoride have been highlighted since the 2012 accident, which led to a more than fivefold increase in management standards for handling facilities. Hydrogen fluoride converts to hydrofluoric acid when exposed to the air, which can be fatal to humans. This study simulates the effects of a release of a toxic substance in the workplace, even though a protection layer has been provided to minimize the damage caused by the released toxic substance, and recommend ways to control the risk to workers in the event of a release in the workplace.

RNA helicase DEAD-box-5 is involved in R-loop dynamics of preimplantation embryos

  • Hyeonji Lee;Dong Wook Han;Seonho Yoo;Ohbeom Kwon;Hyeonwoo La;Chanhyeok Park;Heeji Lee;Kiye Kang;Sang Jun Uhm;Hyuk Song;Jeong Tae Do;Youngsok Choi;Kwonho Hong
    • Animal Bioscience
    • /
    • v.37 no.6
    • /
    • pp.1021-1030
    • /
    • 2024
  • Objective: R-loops are DNA:RNA triplex hybrids, and their metabolism is tightly regulated by transcriptional regulation, DNA damage response, and chromatin structure dynamics. R-loop homeostasis is dynamically regulated and closely associated with gene transcription in mouse zygotes. However, the factors responsible for regulating these dynamic changes in the R-loops of fertilized mouse eggs have not yet been investigated. This study examined the functions of candidate factors that interact with R-loops during zygotic gene activation. Methods: In this study, we used publicly available next-generation sequencing datasets, including low-input ribosome profiling analysis and polymerase II chromatin immunoprecipitation-sequencing (ChIP-seq), to identify potential regulators of R-loop dynamics in zygotes. These datasets were downloaded, reanalyzed, and compared with mass spectrometry data to identify candidate factors involved in regulating R-loop dynamics. To validate the functions of these candidate factors, we treated mouse zygotes with chemical inhibitors using in vitro fertilization. Immunofluorescence with an anti-R-loop antibody was then performed to quantify changes in R-loop metabolism. Results: We identified DEAD-box-5 (DDX5) and histone deacetylase-2 (HDAC2) as candidates that potentially regulate R-loop metabolism in oocytes, zygotes and two-cell embryos based on change of their gene translation. Our analysis revealed that the DDX5 inhibition of activity led to decreased R-loop accumulation in pronuclei, indicating its involvement in regulating R-loop dynamics. However, the inhibition of histone deacetylase-2 activity did not significantly affect R-loop levels in pronuclei. Conclusion: These findings suggest that dynamic changes in R-loops during mouse zygote development are likely regulated by RNA helicases, particularly DDX5, in conjunction with transcriptional processes. Our study provides compelling evidence for the involvement of these factors in regulating R-loop dynamics during early embryonic development.

Bayesian Network-based Probabilistic Safety Assessment for Multi-Hazard of Earthquake-Induced Fire and Explosion (베이지안 네트워크를 이용한 지진 유발 화재・폭발 복합재해 확률론적 안전성 평가)

  • Se-Hyeok Lee;Uichan Seok;Junho Song
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.3
    • /
    • pp.205-216
    • /
    • 2024
  • Recently, seismic Probabilistic Safety Assessment (PSA) methods have been developed for process plants, such as gas plants, oil refineries, and chemical plants. The framework originated from the PSA of nuclear power plants, which aims to assess the risk of reactor core damage. The original PSA method was modified to adopt the characteristics of a process plant whose purpose is continuous operation without shutdown. Therefore, a fault tree, whose top event is shut down, was constructed and transformed into a Bayesian Network (BN), a probabilistic graph model, for efficient risk-informed decision-making. In this research, the fault tree-based BN from the previous research is further developed to consider the multi-hazard of earthquake-induced fire and explosion (EQ-induced F&E). For this purpose, an event tree describing the occurrence of fire and explosion from a release is first constructed and transformed into a BN. And then, this BN is connected to the previous BN model developed for seismic PSA. A virtual plot plan of a gas plant is introduced as a basis for the construction of the specific EQ-induced F&E BN to test the proposed BN framework. The paper demonstrates the method through two examples of risk-informed decision-making. In particular, the second example verifies how the proposed method can establish a repair and retrofit strategy when a shutdown occurs in a process plant.

Method to Derive the Optimal Vent Position when Flammable Liquid Leaks Based on CFD (CFD 기반 인화성 액체 누출 시 최적의 환기구 배치 도출 방안)

  • Eun-Hee Kim;Seung-Hyo An;Jun-Seo Lee;Byung-Chol Ma
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.11-18
    • /
    • 2024
  • If flammable liquid leaks, vapor evaporated from the pool can cause poisoning or suffocation to workers, leading to secondary accidents such as fires and explosions. To prevent such damage, ventilation facilities shall be installed when designing indoor workplaces. At this time, the behavior varies depending on the characteristics of the leaked chemical, so it is necessary to select a suitable vent location according to the material. Therefore, 3D CFD simulations were introduced to derive optimal vent position and ventilation efficiency was quantitatively evaluated by vent position. At this time, assuming a situation in which flammable liquids leak at indoor workplaces to form pools, the concentration of vapor evaporated from pools was compared to derive the optimal vent position. As a result of research on toluene with high vapor density, ventilation efficiency was confirmed to be the highest at the upper supply-lower exhaust, and it is judged that introducing it can achieve about 3.7 times ventilation effect at the same maintenance cost. Through this study, it is expected that the workplace will be able to secure workers' safety by applying simulation results and installing ventilation ports.

Division of Soil Properties in Reclaimed Land of the Mangyeong and Dongjin River Basin and Their Agricultural Engineering Management (만경강과 동진강 유역 간척농경지 토양특성 구분과 농공학적 관리 대책)

  • Hwang, Seon-Woong;Kang, Jong-Gook;Lee, Kyung-Do;Lee, Kyung-Bo;Park, Ki-Hun;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.444-450
    • /
    • 2012
  • The physical and chemical properties of soil in the Mangyeong and Dongjin river basin had been investigated in order to establish the most optimum soil improvement plan on the reclaimed land. The total soil area by reclamation in Saemangeum basin is 113,971 ha. The classification by the distribution of soil series and soil texture is as following. 13 soil series including Chonnam, Buyong and Chonbuk series are period-unknown areas. Regarding the soil texture, they are fine silty ~ clayey very fine. From 1920s to 1960s, Mangyeong, Gwanghwal and Chonbuk series had coarse silty textured soil. After the 1970s, Mangyeong, Gwanghwal, Munpo, Yeompo, Poseung, Gapo and Hasa series have more sandy soil ~ moderately coarse loamy textured soil. Regarding the chemical properties, the concentrations of EC, Exch. $K^+$, $Mg^{2+}$, $Na^+$ and pH are high regardless of the time of reclamation. On the other hand, organic matter (OM) of top soil were 3.3~16.1 g $kg^{-1}$. The organic matter contents were very low though the soil had been farmed for a long time. Furthermore, the deep soil had almost no organic matter with 5.6~1.1 g $kg^{-1}$. The reason is believed that there had not been any movement of OM and clay because pressure or induced pans had been formed by large agricultural machineries and poor vertical drain. Regarding the forming of illuvial horizon (B layer) which tells the development extent of soil, only in the Hwapo reclaimed area where rice had been cultivated for past 90 years, Fe and Mn from top soil are deposited at underground 20~30 cm with 7~8 cm thickness by the movement of clay. It is believed that it had been possible because the earthiness is silty clay loam soil with relatively high content of clay. The soils are soil with concern of damage from sea water, soil on flimsy ground and sandy soil. Therefore, soil improvement for stable crop production can be expected; if the water table would be lowered by subsurface drainage, the water permeability would be enhanced by gypsum and organic matter, and the sandy soil would be replaced by red soil with high content of clay.