• Title/Summary/Keyword: chemical correlation

Search Result 2,067, Processing Time 0.031 seconds

Effect of Particle Size on Physico-Chemical Properties and Antioxidant Activity of Corn Silk Powder (옥수수수염 분말의 입자크기별 이화학적 특성과 항산화활성)

  • Cha, Sun-Mi;Son, Beom-Young;Lee, Jin-Seok;Baek, Seong-Bum;Kim, Sun-Lim;Ku, Ja-Hwan;Hwang, Jong-Jin;Song, Beom-Heon;Woo, Sun-Hee;Kwon, Young-Up;Kim, Jung-Tae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.1
    • /
    • pp.41-50
    • /
    • 2012
  • The study was carried out to analyze the relationship between analysis of antioxidant activity and the level of functional components according to particle size of corn silk. Particle size was classified into 5 groups. By particle size distribution and color difference, the total phenol content and DPPH radical scavenging activity were observed. The particle sizes of corn silk were $199.17{\mu}m$, $178.27{\mu}m$, $85.48{\mu}m$, $27.4{\mu}m$ and $20.97{\mu}m$, respectively. The lightness of colored pigments was increased when the particle size was decreased. The contents of free sugar (fructose, glucose, galactose, sucrose, and maltose) of corn silk were analyzed using a HPLC. The total phenol contents by the particle sizes of corn silk were 2.01 mg/g, 2.02 mg/g, 2.06 mg/g, 2.26 mg/g and 2.26 mg/g, respectively. DPPH radical scavenging activities of samples were 21.00%, 21.75%, 22.90%, 24.35% and 23.67%, respectively. Antioxidative activities of Trolox and Fe(II) in corn silk were measured by ferric reducing antioxidant power (FRAP) assay and Trolox equivalent antioxidant capacity (TEAC) assay. TEAC values of samples were $2.36{\mu}mol$ TE / g dw, $2.81{\mu}mol$ TE / g dw, $3.20{\mu}mol$ TE / g dw, $3.36{\mu}mol$ TE / g dw, and $3.44{\mu}mol$ TE / g dw, respectively. FRAP values of samples were $11.67{\mu}mol$ Fe(II) / g dw, $12.80{\mu}mol$ Fe(II) / g dw, $13.43{\mu}mol$ Fe(II) / g dw, $13.85{\mu}mol$ Fe(II) / g dw and $15.95{\mu}mol$ Fe(II) / g dw, respectively. Total phenolic content and antioxidantive activities based on FRAP assay and TEAC assay were increased with decreasing particle size. In addition, DPPH radical scavenging activity was also increased. A significant correlation was also noted between DPPH radical scavenging activities and the content of phenolic compounds.

The Sr and Pb Isotopic and Geochemical Properties of the Atmospheric Bulk Deposition of Jeonju, Gunsan, and Namweon Areas (전주, 군산, 남원지역 강수의 Sr, Pb동위원소 지화학)

  • Jeon Seo-Ryeong;Chung Jae-il
    • Economic and Environmental Geology
    • /
    • v.38 no.4 s.173
    • /
    • pp.463-479
    • /
    • 2005
  • The Sr and Pb isotopic ratios and chemical composition were measured for atmospheric bulk deposition samples collected in the Jeonju, Gunsan and Namweon areas over a period of one year. Acidity of deposition ranged pH $4\~7$ with little higher in dry season, and around pH 5.0 in rainy season. The EC and TDS of rainy season was low showing dilution effect, and increased during dry season. Sulfate $(SO_4)\;and\;NO_3$ are atmospheric aerosols largely of anthropogenic origin in winter. Sodium was concentrated in winter deposition, Ca was concentrated in spring to summer deposition. Namweon has lower EC and TDS than those of other, and Jeonju has higher. Namweon was concentrated in $HCO_3$ and Cunsan was concentrated in Cl. Aluminium, Cu, and Zn show good correlation index with TDS, indicating of their origin atmospheric. $^{87}Sr/^{86}Sr$ ratios of bulk deposition ranged from 0.7109 to 0.7128. The isotopic variations are correlated with mixing of isotopic compositions of local soils, road deposit and biogenic aerosol. In order to constrain further the origin of aerosols in rainwater, it will be necessary to collect additional Sr isotopic data for aerosols. Lead isotope ratios for all areas were similar and belonged to Pb isotope ratios of Seoul's aerosols, but little different with Beijing's aerosols. It showing that Pb in the Korea mainly derived from the gasoline combustion, not exclusively from the Beijing.

The Behavior of Dissolved and Particulate Phases of Trace Elements within the Watershed of Juam Reservoir (주암호 집수유역 내 용존 및 입자상 미량원소의 거동 특성)

  • Lee, Pyeong-Koo;Chi, Se-Jung;Youm, Seung-Jun
    • Economic and Environmental Geology
    • /
    • v.41 no.4
    • /
    • pp.405-425
    • /
    • 2008
  • In order to investigate the amounts of trace elements flowing into reservoir, and to elucidate the relationship between trace element mobility and fraction size, the stream water and sediment samples were collected from thirty-two sites of the 3rd or 4th order stream within watershed surrounding the Juam reservoir. Chemical analyses of trace elements (As, Cd, Cr, Cu, Ni, Pb and Zn) for all samples were completed, and additionally cationi and anion for stream water samples. Considering the distribution of rocks and contamination sources in watershed, the eight stream sediments were selected from typical sites representing study areas, and we determined the concentrations of trace elements according to size fractions ($2\;mm{\sim}200\;{\mu}m$, $200{\sim}100\;{\mu}m$, $100{\sim}50\;{\mu}m$, $50{\sim}20\;{\mu}m$ and < $20\;{\mu}m$). The correlation relationships between concentrations and size fractions of stream sediments were important to identify the hydro-geochemical behavior of trace elements that flow into Juam reservoir. Stream waters showed four water types (Ca-Mg-$HCO_3$, Ca-Na-$HCO_3$-Cl, Ca-Na-$HCO_3-SO_4$, Ca-Na-$HCO_3$) depending on pollution sources such as coal mine, metal mine, farm-land and dwellings. Concentrations of trace elements increased clearly with the decrease in size fractions of stream sediments. Concentrations of Cu, Pb and Zn increased dramatically in silt size (< $20\;{\mu}m$) fraction, while As had high concentrations in sand size ($2\;mm{\sim}100\;{\mu}m$) fraction in downstream sediments of metal mines. These indicate that Cu, Zn, and Pb moved into Juam reservoir easily in the adsorbed form on silt size grain in sediments, and As was transported as As-bearing mineral facies, resulting in its less chance to reach into Juam reservoir.

Effects of Paper Sludge Application on the Chemical Properties of Paddy Soil and Growth of Paddy Rice;IV. Effects of Paper Sludge Application on the Seasonal Variations of Volatie Lower Fatty Acids in Paddy Soil (제지(製紙)슬러지의 시용(施用)이 논 토양(土壤)의 화학성(化學性)과 수도생육(水稻生育)에 미치는 영향(影響);IV. 슬러지시용(施用)이 토양중(土壤中) 휘발성저급지방산변화(揮發性低級脂肪酸變化)에 미치는 영향(影響))

  • Heo, Jong-Soo;Kim, Kwang-Sik;Ha, Ho-Sung
    • Korean Journal of Environmental Agriculture
    • /
    • v.7 no.1
    • /
    • pp.34-42
    • /
    • 1988
  • To investigate the effects of paper sludge on seasonal variations of volatile lower fatty acids in paddy soil, paper sludge was applied to pots at the rate of either 300, 600, 900 or 1,200 kg/l0a which was either preadjusted at a C/N ratio of 30 : 1 or not adjusted. The decomposition rate of paper sludge, the evolution of $CO_2$, and the fractions of volatile lower fatty acids in the soil were determined. The results are summarized as follows: 1. Paper sludge was decomposed to $35{\sim}44%$, and its C/N ratio was $55{\sim}82$, respectively, at 120 days after treatment. 2. The evolution of $CO_2$, in the soil was proportional to the amount of paper sludge added. Significant positive correlations were observed the $CO_2$ evolution was compared with the decomposition rate of paper sludge, and volatile fatty acid contents in soil. 3. Acetic, propionic, butyric, i-butyric, valeric and i-valeric acids were identified in all the soils investigated. The content of the total volatile fatty acids in the soil increased with as the application of paper sludge increased. The formation of the acids was the highest at 25 days after treatment, and thereafter the contents of the acids decreased as time elapsed. 4. The volatile fatty acids in the soil inhibited the growth of paddy rice in early stages. The contents of acetic, propionic and i-valeric acids in the soil negatively, correlated with the uptake of N, $P_2O_5$, $K_2O$, CaO, MgO and $SiO_2$ in the paddy rice at 25 days after transplantation. In addition, the uptake of $P_2O_5$ and CaO in the paddy rice negatively correlated with the content of butyric acid in the soil. 5. The content of total volatile fatty acids positively correlated with the content of $Fe^{++}$ and $Mn^{++}$ in the soil at 25 days after transplantation. A significantly positive correlation was observed between $Fe^{++}$ and acetic acid contents in the soil.

  • PDF

Fertilizer Recommendation Based on Soil Testing for Tomato in Plastic Film House (토양검정에 의한 시설재배 토마토의 적정 시비량 추천)

  • Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.4
    • /
    • pp.350-358
    • /
    • 1998
  • To determine the optimum application of fertilizers for the cultivation of tomato in plastic film house, eighteen soils which contained different salt contents were taken from four different areas under plastic film house cultivation, Youngdong, Boeun, Cheongweon county, and Cheongju city. The dry weight and the amount of N, P, and K uptakes of tomato in the plot with no fertilization were considered as the factors representing the fertility of the soil. The differences in the dry weight and in the amounts of N, P, and K uptakes of plants between the plots with fertilization and with no fertilization were considered as the factors representing the total effect of fertilizer and the effects of fertilizer N, P, and K, respectively. These factors of soil fertility and fertilizer effects were estimated by correlation and regression with the chemical properties of the soil in order to find the critical levels and recommended method for optimum fertilization of tomato. The standardized partial regression coefficients of inorganic nitrogen ($NO_3-N+NH_4-N$) contents in soil for the factors of fertility ranged from 247 to 1,159, showing the best, while those of the others ranged from 0.02 to 4.02. Those of inorganic nitrogen ($NO_3-N+NH_4-N$) contents in soil for the electrical conductivity were also the best and were ranged from 35.2 to 36.0 compared with the values of less than 1.0 of the others. These results demonstrate that the content of inorganic nitrogen in the soil is the best index for both soil fertility and electrical conductivity of the soil. The critical level of inorganic nitrogen ($NO_3-N+NH_4-N$) in the soil for maximum productivity with zero value of fertilizer effects for tomato, estimated through Cate-Nelson split method was $220mg\;kg^{-1}$. This was the same value as evaluation for the cultivation of chinese cabbage. In conclusion, for optimal application of fertilizer in plastic film house, 1) no fertilization is recommended when the contents of inorganic nitrogen in the soil is more than $220mg\;kg^{-1}$; however, 2) in the case of less than $220mg\;kg^{-1}$ of inorganic nitrogen content in the soil, the optimal level of fertilization could be estimated through the regression equation between fertilizer effects and content of inorganic nitrogen in the soil.

  • PDF

Effect of Nitrite Substitution of Sausage with Addition of Purple Sweet Potato Powder and Purple Sweet Potato Pigment (자색고구마 분말과 자색 색소를 이용한 소시지의 아질산염 대체 효과)

  • Lee, Namrye;Kim, Chung Sick;Yu, Gun Sung;Park, Man Chun;Jung, Wan Ou;Jung, Un Kwon;Jo, Yoon Joung;Kim, Kyung Hee;Yook, Hong Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.6
    • /
    • pp.896-903
    • /
    • 2015
  • The objective of this study was to investigate the effect of nitrite substitution of sausage with purple sweet potato by examining the quality characteristics of sausage. Four sausage samples were prepared as follows: F1 (0.15% sodium nitrite), F2 (0.2% pigment), F3 (0.2% pigment and 5% powder), and F4 (0.2% pigment and 10% powder). A substitution of sodium nitrite with 0.2% purple sweet potato pigment reduced redness while increased yellowness. However, the addition of 5% purple sweet potato powder to 0.2% purple sweet potato pigment increased redness while reduced yellowness, which was similar to those of sausage with 0.15% addition of sodium nitrite. Further, color change increased as the content of purple sweet potato increased. As the amount of purple sweet potato increased, the contents of Ca, K, and Mg increased but hardness, gumminess, and chewiness decreased. In the sensory evaluation, the addition of purple sweet potato did not influence on appearance, color, or flavor. However, the addition of 10% purple sweet potato decreased the taste and texture of sausage. Correlation coefficients between overall acceptability, texture, appearance, color, taste, and flavor were 0.901, 0.895, 0.877, 0.844, and 0.688, respectively. Therefore, proper content of purple sweet potato powder and purple sweet potato pigment were determined to be 5% and 0.2%, respectively, for the substitution of sodium nitrite.

Long-term (2002~2017) Eutropication Characteristics, Empirical Model Analysis in Hapcheon Reservoir, and the Spatio-temporal Variabilities Depending on the Intensity of the Monsoon (합천호의 장기간 (2002~2017) 부영양화 특성, 경험적 모델 분석 및 몬순강도에 따른 시공간적 이화학적 수질 변이)

  • Kang, Yu-Jin;Lee, Sang- Jae;An, Kwang-Guk
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.5
    • /
    • pp.605-619
    • /
    • 2019
  • The objective of this study was to analyze eutrophication characteristics, empirical model analysis, and variation of water quality according to monsoon intensity in Hapcheon Reservoir for 16 years from 2002 to 2017. Long-term annual water quality analysis showed that Hapcheon Reservoir was in a meso-nutrition to eutrophic condition, and the eutrophic state intensified after the summer monsoon. Annual rainfall volume (high vs. low rainfall) and the seasonal intensity in each year were the key factors that regulate the long-term water quality variation provided that there is no significant change of the point- and non-point source in the watershed. Dry years and wet years showed significant differences in the concentrations of TP, TN, BOD, and conductivity, indicating that precipitation had the most direct influence on nutrients and organic matter dynamics. Nutrient indicators (TP, TN), organic pollution indicators (BOD, COD), total suspended solids, and chlorophyll-a (Chl-a), which was an estimator of primary productivity, had significant positive relations (p<0.05) with precipitation. The Chl-a concentration, which is an indicator of green algae, was highly correlated with TP, TN, and BOD, which differed from other lakes that showed the lower Chl-a concentration when nutrients increased excessively. Empirical model analysis of log-transformed TN, TP, and Chl-a indicated that the Chl-a concentration was linearly regulated by phosphorus concentration, but not by nitrogen concentration. Spatial regression analysis of the riverine, transition, and lacustrine zones of $log_{10}TN$, $log_{10}TP$, and $log_{10}CHL$ showed that TN and Chl-a had significant relations (p<0.005) while TN and Chl-a had p > 0.05, indicating that phosphorus had a key role in the algal growth. Moreover, the higher correlation of both $log_{10}TP$ and $log_{10}TN$ to $log_{10}CHL$ in the riverine zone than the lacustrine zone indicated that there was little impact of inorganic suspended solids on the light limitation in the riverine zone.

Assessment of Environmentally Sound Function on the Increasing of Soil Fertility by Korean Organic Farming (한국 토착유기농업의 토양비옥도 증진책에 대한 환경보전적 기능 평가)

  • Sohn, Sang-Mok;Han, Do-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.3
    • /
    • pp.193-204
    • /
    • 2000
  • In order to get some basic data on environmental friendly function by Korean organic farming, the chemical characteristics of soil were determined on 100 farm cultivating site in Paldang watershed area of Great Seoul. The EC and content of $NO_3-N$ and Av. $P_2O_5$ in topsoil(0~30cm) showed $2.30dS\;m^{-1}$, $82mg\;kg^{-1}$, $918mg\;kg^{-1}$ in the soil cultivated chinese cabbage. $2.29dS\;m^{-1}$, $86mg\;kg^{-1}$, $954mg\;kg^{-1}$ in the soil of lettuce, $1.83dS\;m^{-1}$, $66mg\;kg^{-1}$, $1114mg\;kg^{-1}$ in the soil of crown daisy. These salt accumulation(EC) and the high concentration of mineral content in topsoil such as nitrate and phosphate showed the soils of organic farming were contaminated by practice of organic farming for the maintenance strategy of soil fertility. The $NO_3-N$ and Av. $P_2O_5$ in the subsoil(30~60cm) showed $75mg\;kg^{-1}$ and $641mg\;kg^{-1}$, $72mg\;kg^{-1}$ and $466mg\;kg^{-1}$, $42mg\;kg^{-1}$ and $873mg\;kg^{-1}$ in soil cultivated chinese cabbage, lettuce and crown daisy respectively. It indicates eventually the high concentration of nitrate and phosphate in topsoil caused penetration to subsoil, and the high concentration of mineral contents in subsoil indicate the potential risk of leaching of ground water by Korean organic farming. The positive correlation at 1% between EC and $NO_3-N$, $K_2O$, T-C, $P_2O_5$ and T-N show the salt accumulation in the both soil depth of Korean organic farming were caused by minerals such as $NO_3-N$, $K_2O$, T-C, $P_2O_5$ and T-N by overuse of organic fertilizer.

  • PDF

Factor Analysis of Soil and Water Quality Indicators in Different Agricultural Areas of the Han River Basins (한강수계 농업지대에서 토양과 수질 지표에 대한 요인 분석)

  • Jung, Yeong-Sang;Yang, Jae-E;Joo, Jin-Ho;Kim, Jeong-Je;Kim, Hyun-Jeong;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.398-404
    • /
    • 1999
  • Factor analysis technique was employed to screen the principal indicators influencing soil and water qualities in the intensively cultivated areas of the Han River Basin. Soil chemical parameters were analyzed for the soil samples collected at intensive farming area in Pyungchang-Gun, and water quality monitoring data were obtained from the agricultural small catchments of Han River Basin during 1996 and 1997. Among the $11{\times}11$ cross correlation matrix, 29 correlations were significant out of 55 soil quality indicator pairs. The overall Kaiser's measure of sampling adequacy(KMS) value was acceptable with 0.60. Most indicators except iron were acceptable. Among soil indicators, the first factors showing high factor loadings were pH, Ca and Mg. The factor loading was the highest for Ca. The second factor could be characterized as phosphate and micronutrient. The third factor was organic matter and EC, and the fourth factor was potassium and Fe. Out of 190 water quality indicators, 86 correlations were significant. Overall KMS value was 0.74, but the KMS values for pH, TSS, Cd, Cu and Fe were lower than 50. The first factor of EC accounts 27.1 percents of the total variance, and showed high factor loadings with Na, Ca, $SO_4$, Mg, K, Cl, $NO_3$, and T-N. The second factor showed high loadings with Zn, Fe, Mn and Cd. The third to seventh factors could be characterized as $PO_4$, TSS, inorganic nitrogen, pH and T-P, and Cu factors, respectively. The factor score for EC was the highest in Kuri, followed by Chunchon, Dunnae and Daegwanryng. The factor score for heavy metals were the highest in the Daegwanryng. The results demonstrated that the factor analysis could be useful to select the most principal factor influencing soil and water qualities in the agricultural watershed.

  • PDF

Effects of Temperature and Saturation on the Crystal Morphology of Aragonite (CaCO3) and the Distribution Coefficient of Strontium: Study on the Properties of Strontium Incorporation into Aragonite with respect to the Crystal Growth Rate (온도와 포화도가 아라고나이트(CaCO3)의 결정형상과 스트론튬(Sr)의 분배계수에 미치는 영향: 결정성장속도에 따른 아라고나이트 내 스트론튬 병합 특성 고찰)

  • Lee, Seon Yong;Chang, Bongsu;Kang, Sue A;Seo, Jieun;Lee, Young Jae
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.2
    • /
    • pp.133-146
    • /
    • 2021
  • Aragonite is one of common polymorphs of calcium carbonate (CaCO3) and formed via biological or physical processes through precipitation in many different environments including marine ecosystems. It is noted that aragonite formation and growth as well as the substitution of trace elements such as strontium (Sr) in the aragonite structure would be dependant on several key parameters such as concentrations of chemical species and temperature. In this study, properties of the incorporation of Sr into aragonite were investigated over a wide range of various saturation conditions and temperatures similar to the marine ecosystem. All pure aragonite samples were inorganically synthesized through a constant-addition method with varying concentrations of the reactive species ([Ca]=[CO3] 0.01-1 M), injection rates of the reaction solution (0.085-17 mL/min), and solution temperatures (5-40 ℃). Pure aragonite was also formed even under the Sr incorporation conditions (0.02-0.5 M, 15-40 ℃). When temperature and saturation index (SI) with respect to aragonite increased, the crystallinity and the crystal size of aragonite increased indicating the growth of aragonite crystal. However, it was difficult to interpret the crystal growth rate because the crystal growth rate calculated using BET-specific surface area was significantly influenced by the crystal morphology. The distribution coefficient of Sr (KSr) into aragonite decreased from 2.37 to 1.57 with increasing concentrations of species (Ca2+ and CO32-) at a range of 0.02-0.5 M. Similarly, it was also found that KSr decreased 1.90 to 1.54 at a range of 15-40 ℃. All KSr values are greater than 1, and the inverse correlation between the KSr and the crystal growth rate indicate that Sr incorporation into aragonite is in a compatible relationship.