• 제목/요약/키워드: chemical cleaning

검색결과 524건 처리시간 0.029초

$Al/Al_2O_3/Si$(100) Solar Cell 제작 및 특성 평가

  • 민관홍;유정재;연제민;찬타솜바스 시사바이;정상현;김광호
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.313.2-313.2
    • /
    • 2013
  • 본 연구에서는 기존에 연구된 Solar Cell 보다 구조 및 제작이 단순한 $Al/Al_2O_3/Si$(100) Solar cell을 제작하여 평가하였다. 기판으로는 p-type Si(100), 0.5~2 ${\Omega}{\cdot}cm$을 사용하여 chemical cleaning 후 ALD(Atom Layer Deposition)법으로 Al2O3 터널링 절연막을 증착하였으며, 박막의 두께를 1~10 nm로 변화시켜 MIS 커패시터의 터널링 효과를 평가하였다. MIS 커패시터의 전기적 특성평가를 위해 누설전류 밀도-전계 특성은 pA meter/DC Voltage source를 사용하였고, 커패시턴스-전압특성, D-factor 특성은 precision LCR meter를 사용하였다. $Al/Al_2O_3/Si$(100) Solar cell의 특성평가를 위해 300~1100nm 파장영역에 따른 양자 효율을 평가하기 위해 Quantum Efficiency system (QE)을 사용하였고, Stanard Test Conditions 100 $mW/cm^2$, AM1.5, $25^{\circ}C$ 조건의 Voc, Isc, Jsc, FF (Fill Factor) 및 Efficiency(%)를 평가하기 위해 Solar simulator를 이용하였다.

  • PDF

역삼투막을 이용한 음식폐기물 액비의 농축 (Accumulation of Food Wastes Liquid Fertilizer using Reverse Osmosis Membrane System)

  • 차기철;황명구;이명규;태민호
    • 한국물환경학회지
    • /
    • 제18권2호
    • /
    • pp.159-168
    • /
    • 2002
  • A lab-scale Reverse Osmosis(RO) membrane reactor was installed to investigate the membrane permeability, characteristics of membrane fouling at each conditions, and performance of elimination at different trans-membrane pressure(TMP) in the liquid fertilizer accumulated system. Experimental setup was divided to three different TMP conditions. As a result of experiment, permeability of RO membrane was proportional to the increase of TMP and temperature. After experiment was completed, two types chemical cleaning(remove the organic foulant and inorganic foulant) was done, and recover rate of permeability was each 99.8, 99.7 and 99.7%, respectively. From this experimental data, membrane fouling could be determined that the most of it was recoverable in this system, and major reason of fouling was concentration polarization. Elimination rate of solute substance in the liquid fertilizer indicated very stable(above 99%), except ammonia nitrogen, and the most stable elimination rate was investigated at the highest TMP condition (Run 3).

EFFECT OF ION BEAM ASSISTED CLEANING ON ADHESION OF ALUMINIUM TO POLYMER SUBSTRATE OF PC AND PMMA

  • Kwon, Sik-Chol;Lee, Gun-Hwan;Lee, Chuel-Yong;Gob, Han-Bum;Lim, Jun-Seop;Goh, Sung-Jin
    • 한국표면공학회지
    • /
    • 제32권3호
    • /
    • pp.428-432
    • /
    • 1999
  • As metallic surface has its unique lustrous appearance and optical reflectance in visible range of light, the metallization of plastic surface has been an essential drive toward weight reduction for fuel economy and decorations in transportation industry and has been put into practiced from wet chemical-electrochemial to dry vacuum process in view of an environmental effect. Electron-beam metallization was used in this work with an aim at improving the scratchproof surface hardness of plastic substrate with metallic finish character. Thin film of Al ($1000\AA$) and $SiO_2$($7000\AA$) were metallized on substrate of PC and PMMA and the films were evaluated by pencil test for surface hardness and by cross-cut tape test for adhesion. The ion beam treatment improved around twice as hard as non-treat surface. The ion beam is effect on its hardness and adhesion to surface hardened PC substrate.

  • PDF

Enhanced adhesion properties of conductive super-hydrophobic surfaces by using zirco-aluminate coupling agent

  • Park, Myung-Hyun;Ha, Ji-Hwan;Song, Hyeonjun;Bae, Joonwon;Park, Sung-Hoon
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.387-392
    • /
    • 2018
  • Various technical approaches and concepts have been proposed to develop conductive super-hydrophobic (SH) surfaces. However, most of these approaches are not usable in practical applications because of insufficient adhesion and cost issues. Additionally, durability and uniformity issues are still in need of improvement. The goal of this research is to produce a large-area conductive SH surface with improved adhesion performance and uniformity. To this end, carbon nanotubes (CNT) with a high aspect ratio and elastomeric polymer were utilized as a conductive filler and matrix, respectively, to form a coating layer. Additionally, nanoscale silica particles were utilized for stable implementation of the conductive SH surface. To improve the adhesion properties between the SH coating layer and substrate, pretreatment of the substrate was conducted by utilizing both wet and dry etching processes to create specific organic functional groups on the substrate. Following pretreatment of the surface, a zirco-aluminate coupling agent was utilized to enhance adhesion properties between the substrate and the SH coating layer. Raman spectroscopy revealed that adhesion was greatly improved by the formation of a chemical bond between the substrate and the SH coating layer at an optimal coupling agent concentration. The developed conductive SH coating attained a high electromagnetic interference (EMI) shielding effectiveness, which is advantageous in self-cleaning EMI shielding applications.

이중 초음파 조사 시스템에서 진동부 사이의 거리가 초음파 화학 반응에 미치는 영향 (The Effect of Distance between Two Transducers on Sonochemical Reactions in Dual Irradiation Systems)

  • 김은경;손영규
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제18권5호
    • /
    • pp.39-45
    • /
    • 2013
  • Many researchers have studied the effectiveness of ultrasound in chemical and environmental engineering fields including material synthesis, pollutant removal, cleaning, extraction, and disinfection. Acoustic cavitation induced by ultrasound irradiation in aqueous phase can cause various sonophysical and sonochemical reactions without any chemicals. However most of the previous studies focused only on the relationships between ultrasonic conditions and the results of sonochemical reactions in lab-scale sonoreactors. As a results of this, only a few studies have been devoted to design and optimization of industrial scale sonoreactors. In this study, the effect of the distance between two opposite transducer modules on sonochemical reactions was investigated in single and dual irradiation systems (334 kHz) for four distances including 50, 100, 150, and 200 mm using KI dosimetry. It was found that the dual irradiation systems provided higher performance in terms of the zeroth reaction coefficient and the cavitation yield compared to the single irradiation systems. The sonochemiluminescence (SCL) images for the visualization of the cavitation field showed that cavitation active zone was larger and sonochemical reaction intensity was much higher in the dual irradiation system than in the single irradiation system.

AcciMap, STAMP, FRAM을 이용한 반응기 세척 작업 중 화재 사고 분석 (Analysis of a Fire Accident during a Batch Reactor Cleaning with AcciMap, STAMP and FRAM)

  • 서동현;배계완;최이락;한우섭
    • 한국안전학회지
    • /
    • 제36권4호
    • /
    • pp.62-70
    • /
    • 2021
  • Representative systematic accident analysis methods proposed so far include AcciMap, STAMP, and FRAM. This study used these three techniques to analyze a fire accident case that occurred during routine manufacturing work in a domestic chemical plant and compared the results. The methods used different approaches to identify the cause of the accident, but they all highlighted similar causal factors. In addition to technical issues, the three accident analysis methods identified factors related to safety education, risk assessment, and the operation of the process safety management system, as well as management philosophy and company culture as problems. The AcciMap and STAMP models play complementary roles because they use hierarchical structures, while FRAM is more effective in analyses centered on human and organizational functions than in technical analyses.

초발수 표면을 만들기 위한 마이크로-나노 몰드 제작 공정 (Manufacturing process of micro-nano structure for super hydrophobic surface)

  • 임동욱;박규백;박정래;고강호;이정우;김지훈
    • Design & Manufacturing
    • /
    • 제15권4호
    • /
    • pp.57-64
    • /
    • 2021
  • In recent materials industry, researches on the technology to manufacture super hydrophobic surface by effectively controlling the wettability of solid surface are expanding. Research on the fabrication of super hydrophobic surface has been studied not only for basic research but also for self-cleaning, anti-icing, anti-friction, flow resistance reduction in construction, textile, communication, military and aviation fields. A super hydrophobic surface is defined as a surface having a water droplet contact angle of 150 ° or more. The contact angle is determined by the surface energy and is influenced not only by the chemical properties of the surface but also by the rough structure. In this paper, maskless lithography using DMD, electro etching, anodizing and hot embossing are used to make the polymer resin PMMA surface super hydrophobic. In the fabrication of microstructure, DMDs are limited by the spacing of microstructure due to the structural limitations of the mirrors. In order to overcome this, maskless lithography using a transfer mechanism was used in this paper. In this paper, a super hydrophobic surface with micro and nano composite structure was fabricated. And the wettability characteristics of the micro pattern surface were analyzed.

R-134a 터보냉동기 응축기의 무세정 수처리 약품 효과 연구 (A Study on the Effect of Non-Clean Water Treatment Chemicals for R-134a Turbo-Chiller Condensers)

  • 정다운;김만회
    • 한국수소및신에너지학회논문집
    • /
    • 제33권4호
    • /
    • pp.437-445
    • /
    • 2022
  • This paper presents an experimental study on the main management factors of the condenser contamination such as fouling and corrosion for the R-134a turbo-chiller to save energy, reduce corrosion rates, and reduce maintenance costs through the application of condenser non-cleaning water treatment chemical. The series of experiment is conducted using combining oxidative microbial sterilizers, non-oxidizing microbial sterilizers, and anti-corrosion agents. The leaving temperature difference and corrosion rates for three different combination of chemicals are collected and analyzed. The experimental results show that the cost reduction (4,066,000 Won/year) of the disinfectant (FT-830) can be achieved by adding the oxidative disinfectant (NaOCl) and the non-oxidizing disinfectant (NX-1116). The LTD value is maintained at 1.9℃, and the corrosion rates of copper and carbon steel specimens are 0.07 mpy and 1.61 mpy, respectively.

실규모 flat sheet MBR 운영 효율과 Fouling 특성을 위한 미생물 군집 평가 (Performance and microbial community analysis for fouling characteristics in a full-scale flat sheet membrane bioreactor)

  • 김승원;최정동
    • 상하수도학회지
    • /
    • 제37권6호
    • /
    • pp.325-334
    • /
    • 2023
  • Membrane bioreactor (MBR) provides the benefits on high effluent quality and construction cost without the secondary clarification. Despite of these advantages, fouling, which clogs the pore in membrane modules, affects the membrane life span and effluent quality. Studies on the laboratory scale MBR were focused on the control of particulate fouling, organic fouling and inorganic fouling. However, less studies were focused on the control of biofouling and microbial aspect of membrane. In the full scale operation, most MBR produces high effluent quality to meet the national permit of discharge regulation. In this study, the performance and microbial community analysis were investigated in two MBRs. As the results, the performance of organic removal, nitrogen removal, and phosphorus removal was similar both MBRs. Microbial community analysis, however, showed that Azonexus sp. and Propionivibrio sp. contributed to indirect fouling to cause the chemical cleaning in the DX MBR.

세피올라이트를 활용한 시멘트 경화체의 미세먼지 흡착 특성 (Fine Dust Adsorption of Cement Matrix Using Sepiolite )

  • 전은영;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.71-72
    • /
    • 2023
  • As industrialization and urbanization accelerate, environmental issues have moved from local concerns to global issues. Among them, air pollution is the most important issue. Modern people spend more than 88% of their day indoors, but the concentration of fine dust and pollutants flowing indoors is increasing. The indoor environment has its own complexity, and various substances used indoors, such as building materials, furniture, electronics, and cleaning agents, emit chemical substances and cause various diseases. Therefore, when selecting building materials and interior finishing materials, the pollutant emission and adsorption capacity must be greatly considered. These considerations will ensure the construction of a sustainable future environment and a healthy life within that environment. Therefore, in order to reduce the generation of indoor air pollutants, this study aims to examine the fine dust adsorption properties of cement hardening materials using sepiolite, which has a porous structure and high absorption power among clay minerals. As a result of the experiment, it was found that the concentration of fine dust decreased as the addition rate of sepiolite increased. It is believed that the fine dust concentration was reduced due to the high porosity due to the microfibrous structure and large specific surface area of sepiolite, which has a porous structure among clay minerals. It is believed that these experimental results can be used as basic research for future use of sepiolite as a construction material.

  • PDF