• Title/Summary/Keyword: chemical cleaning

Search Result 528, Processing Time 0.023 seconds

A Study on Modified Silicon Surface after $CHF_3/C_2F_6$ Reactive Ion Etching

  • Park, Hyung-Ho;Kwon, Kwang-Ho;Lee, Sang-Hwan;Koak, Byung-Hwa;Nahm, Sahn;Lee, Hee-Tae;Kwon, Oh-Joon;Cho, Kyoung-Ik;Kang, Young-Il
    • ETRI Journal
    • /
    • v.16 no.1
    • /
    • pp.45-57
    • /
    • 1994
  • The effects of reactive ion etching (RIE) of $SiO_2$ layer in $CHF_3/C_2F_6$ on the underlying Si surface have been studied by X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometer, Rutherford backscattering spectroscopy, and high resolution transmission electron microscopy. We found that two distinguishable modified layers are formed by RIE : (i) a uniform residue surface layer of 4 nm thickness composed entirely of carbon, fluorine, oxygen, and hydrogen with 9 different kinds of chemical bonds and (ii) a contaminated silicon layer of about 50 nm thickness with carbon and fluorine atoms without any observable crystalline defects. To search the removal condition of the silicon surface residue, we monitored the changes of surface compositions for the etched silicon after various post treatments as rapid thermal anneal, $O_2$, $NF_3$, $SF_6$, and $Cl_2$ plasma treatments. XPS analysis revealed that $NF_3$ treatment is most effective. With 10 seconds exposure to $NF_3$ plasma, the fluorocarbon residue film decomposes. The remained fluorine completely disappears after the following wet cleaning.

  • PDF

Measurement of VOCs Concentrations at Jeonju Industrial Area and Emission Characteristics (전주공단지역의 주요VOCs 배출농도 측정 및 배출원별 특성 분석)

  • Kim, Deug-Soo;Yang, Go-Soo;Park, Bi-O
    • Journal of Environmental Science International
    • /
    • v.16 no.3
    • /
    • pp.299-310
    • /
    • 2007
  • It will be necessary to make proper management plans to preserve the air quality in good level for the public. In order to make these plans, source information and detail emission inventories of the city and near industrial areas should be given. However, lack of the source measurements data makes us more difficult to complete the source inventory. VOC source Inventory could be utilized for the feasibility study to estimate the contribution of VOC sources presenting to the receptor such as residential area. It may give policy maker an idea how to control the air quality, and improve their social environment in the area. This study shows data that measured VOCs concentrations from the local industrial areas in Jeonju during from May 2005 to January 2006. The samples were collected from the near sources in 7 major factories in the industrial park as well as 5 general sources in near city Jeonju area to elucidate the abundances of speciated VOCs and their spacial and temporal distributions depending on source bases. Industrial sources are as follows; chemical, food, paper, wood, metal, non-metal (glass), and painting (coating) industries. The 5 general sources are sampled from tunnel, gasoline gas station, dry cleaning shop, printing (copy) shop, and road pavement working place in urban area. To understand the near source effect at receptor, samples from the 2 receptor sites (one is at center of the industrial complex and the other site is at distance residential area downwind from the center) were collected and analyzed for the comparison to source concentration. The mass contributions of the speciated VOC to total mass of VOCs measured from the different sources and ambient (2 receptors) were presented and discussed.

A Study on the high-flux MBR system using PTFE flat membrane and coagulant(Alum) for removal of phosphorus (PTFE재질의 평판형 분리막과 인제거를 위해 Alum주입을 적용한 고플럭스 MBR시스템에 관한 연구)

  • Lee, Eui-Jong;Kim, Kwan-Yeop;Kwon, Jin-Sub;Kim, Young-Hoon;Lee, Yong-Soo;Lee, Chang-Ha;Jeon, Min-Jung;Kim, Hyung-Soo;Kim, Jung-Rae;Jung, Jin-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.1
    • /
    • pp.95-106
    • /
    • 2011
  • Even though MBR processes have many advantages such as high quality effluents, a small footprint and convenience for operation compared to conventional activated sludge processes, there are some shortcomings in terms of the cost and potential fouling incident that keeps MBR (Membrane bioreactor) processes from being widely applied. To reduce these problems, PTFE (Polytetrafluoroethylene) flat sheet membranes that have excellent permeability and durability were tested instead of PVDF (Polyvinylidene fluoride) membrane which is being used widely in water treatment. Low concentration of sodium hydroxide (NaOH) was also added into the membrane modules in order to prevent the membrane fouling as well as to provide the alkalinity. With conditions mentioned above, a pilot-scale MBR system based on the MLE (Modified Ludzack Ettinger) process was operated at flux of 40 $L/m^{2}/hr$ and over 15,000 mg/L MLSS concentration for about 8 months. And coagulant(alum) was added into the membrane tank to remove phosphorus. Although the more coagulant is added the more effectively phosphorus is removed, that can lead to fouling for a long operation(Ronseca et al.,2009). By the way there is a research that fouling grow up after stopping injection of coagulant(Holbrook, 2004). Stable operation of MBR systems was achieved without major chemical cleaning and the effluent quality was found to be good enough to comply with the treated waste water quality regulations of the Korea.

Fabrication of a robust, transparent, and superhydrophobic soda-lime glass

  • Rahmawan, Yudi;Kwak, Moon-Kyu;Moon, Myoung-Woon;Lee, Kwang-Ryeol;Suh, Kahp-Yang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.86-86
    • /
    • 2010
  • Micro- and nanoscale texturing and control of surface energy have been considered for superhydrophobicity on polymer and silicon. However these surfaces have been reported to be difficult to meet the robustness and transparency requirements for further applications, from self cleaning windows to biochip technology. Here we provided a novel method to fabricate a nearly superhydrophobic soda-lime glass using two-step method. The first step involved wet etching process to fabricate micro-sale patterns on soda-lime glass. The second step involved application of $SiO_x$-incorporated DLC to generate high intrinsic contact angle on the surface using chemical vapor deposition (CVD) process. To investigate the effect of surface roughness, we used both positive and negative micro-scale patterns on soda-limeglass, which is relatively hard for surface texturing in comparison to quartz or Pyrex glasses due to the presence of impurities, but cheaper. For all samples we tested the static wetting angle and transparency before and after 100 cycles of wear test using woolen steel. The surface morphology is observed using optical and scanning electron microscope (SEM). The results shows that negative patterns had a greater wear resistance while the hydrophobicity was best achieved using positive patterns having static contact angle up to 140 deg. with about 80% transparency. The overall experiment shows that positive patterns at etching time of 1 min shows the optimum transparency and hydrophobicity. The optimization of micro-scale pattern to achieve a robust, transparent, superhydrophobic soda-lime glass will be further investigated in the future works.

  • PDF

Increase of Recovery Ratio by Two Stage Membrane Process (the Pressurized PVDF Membrane Followed by Submerged PE Membrane) (PVDF 가압식과 PE 침지식 분리막을 결합한 2단 막여과 공정의 성능검토 및 회수율 증대 방안 연구)

  • Kim, Junhyeon;Mun, Baeksu;Jang, Hong-Jin;Kim, Jinho;Kim, Byungseok
    • Membrane Journal
    • /
    • v.23 no.1
    • /
    • pp.45-53
    • /
    • 2013
  • Membrane filtration processes are increasingly popular for drinking water treatment that requires high quality of water. But pre-treatment system (Coagulation/Flocculation/Sedimentation) requires increased footprint and installation cost. In addition, 5~10% of the concentrate are formed. In this study, the pressurized PVDF membrane (ECONITY Co., Ltd.) system was tested with surface water (Han River, South Korea) without pre-treatment. As a result, permeate flux was operated between 1 m/d and 2.4 m/d (at $25^{\circ}C$) without chemical cleaning for one year and membrane permeate turbidity was maintained stably under 0.05 NTU regardless of raw water turbidity. And we studied application of concetrate treatment of pressurized PVDF membrane by submerged PE membrane (ECONITY Co., Ltd.). As a result, we increased recovery of total treatment process to 99.5%.

High-Rate Biological Nitrogen Removal from Plating Wastewater using Submerged MBR Packed with Granular Sulfur (황 충진 MBR을 이용한 도금폐수의 고효율 생물학적 질소 제거)

  • Kim, Dae-young;Moon, Jin-young;Baek, Jin-uk;Hwang, Yong-woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.2
    • /
    • pp.200-208
    • /
    • 2005
  • In this study, a new submerged membrane bioreactor process packed with granular sulfur (MBR-GS) was operated to identify the biological nitrogen removal behaviors with plating wastewater containing high-strength $NO_3{^-}$ concentration. The continuous denitrification was carried out at $20^{\circ}C$ with various nitrogen loading rates using synthetic wastewater, which composed of $NO_3{^-}$ and $HCO_3{^-}$, but also actual plating wastewater, which was collected from the effluent of the H metal plating company. As a result, high-rate denitrification in the range of $0.8kg\;NO_3{^-}-N/m^3\;day$ was accomplished at nitrogen loading rate of $0.9kg\;NO_3{^-}-N/m^3\;day$ using synthetic wastewater. Also, higher-rate denitrification with actual plating wastewater was achieved up to $0.91kg\;NO_3{^-}-N/m^3\;day$ at the loading rate of $1.11kg\;NO_3{^-}-N/m^3\;day$. Additionally, continuous filtration was possible during up to 30 days without chemical cleaning in the range of 20 cmHg of transmembrane pressure. On the basis of the proposed stoichiometry, ${SO_4}^{2-}$ production could be estimated efficiently, while observed alkalinity consumption was somewhat lower than theoretical value. Consequently, a new process, MBR-GS is capable of high-rate autotrophic denitrification by compulsive flux and expected to be utilized as an alternative of renovation techniques for nitrogen removal from not only plating wastewater but also municipal wastewater with low C/N ratio.

Role of Glutathione Conjugation in 1-Bromobutane-induced Immunotoxicity in Mice

  • Lee, Sang-Kyu;Lee, Dong-Ju;Jeon, Tae-Won;Ko, Gyu-Sub;Yoo, Se-Hyun;Ha, Hyun-Woo;Kang, Mi-Jeong;Kang, Won-Ku;Kim, Sang-Kyum;Jeong, Tae-Cheon
    • Toxicological Research
    • /
    • v.26 no.2
    • /
    • pp.101-108
    • /
    • 2010
  • Halogenated organic compounds, such as 1-bromobutane (1-BB), have been used as cleaning agents, agents for chemical syntheses or extraction solvents in workplace. In the present study, immunotoxic effects of 1-BB and its conjugation with glutathione (GSH) were investigated in female BALB/c mice. Animals were treated orally with 1-BB at 375, 750 and 1500 mg/kg in corn oil once for dose response or treated orally with 1-BB at 1500 mg/kg for 6, 12, 24 and 48 hr for time course. S-Butyl GSH was identified in spleen by liquid chromatography-electrospray ionization tandem mass spectrometry. Splenic GSH levels were significantly reduced by single treatment with 1-BB. S-Butyl GSH conjugates were detected in spleen from 6 hr after treatment. Oral 1-BB significantly suppressed the antibody response to a T-dependent antigen and the production of splenic intracellular interlukin-2 in response to Con A. Our present results suggest that 1-BB could cause immunotoxicity as well as reduction of splenic GSH content, due to the formation of GSH conjugates in mice. The present results would be useful to understand molecular toxic mechanism of low molecular weight haloalkanes and to develop biological markers for exposure to haloalkanes.

A Study on Optimal Conditions for Washing the Heavy Metal Polluted Soil in Ka-hak Mine (가학광산 중금속 오염토양의 세척 최적조건 연구)

  • Kim, Teayoup;Park, Jayhyun;Park, Juhyun
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.55 no.6
    • /
    • pp.517-526
    • /
    • 2018
  • In order to remove pollutants from the soil in the Ka-hak mine site, this study investigates optimization of the acid washing conditions for the soil. The soil at the site is presumed to be contaminated by diffused heavy-metal-contaminated tailings. The major heavy metal pollutants in the soil are copper, lead, and zinc. Gravels larger than 5mm in size constitute approximately 38% of the soil, and these are the least polluted by heavy metals. On the other hand, it is difficult to reduce the concentration of heavy metals in fine soils, particularly those whose sizes are less than 0.075 mm. The results of the continuous process using a hydro-cyclone show that fine soil particles consisting of at least 20% of the raw soil must be separated before the chemical soil washing process in order to achieve reliable cleaning.

Design and Experimental Verification of Blasting Nozzle for Wide Area Surface Treatment based on Incompressible Flow Analysis (비압축성 유동해석에 기초한 대면적 표면처리용 브라스팅 노즐 설계 및 실험적 검증)

  • Kim, Taehyung;Kwak, Jun Gu;Lee, Se Chang;Lee, Sang Ku;Lee, Seung Ho
    • Journal of Energy Engineering
    • /
    • v.28 no.1
    • /
    • pp.49-56
    • /
    • 2019
  • In this study, a blasting nozzle was designed based on incompressible flow analysis to clean wide surface of parts used in power plant. The outlet side section of the designed nozzle has a wide bore with a linear shape. After the design, the nozzle prototype was made by three dimensional printing, and the cleaning performance test was performed after mounting it on the blasting machine. The wide bore size obtained after the analysis was almost the same as the wide bore size obtained from the surface of the plate specimen after the experiment. Ultimately, it was confirmed that the design of blasting nozzle for wide surface treatment is effective.

A Review on Ceramic Based Membranes for Textile Wastewater Treatment (염색폐수의 처리를 위한 세라믹 분리막에 대한 고찰)

  • Kwak, Yeonsoo;Rajkumar, Patel
    • Membrane Journal
    • /
    • v.32 no.2
    • /
    • pp.100-108
    • /
    • 2022
  • Among various industries, the textile industry uses the largest amount of water for coloring textiles which leads to a large amount of wastewater containing various kinds of dye. There are various methods for the removal of dye such as flocculation, ozone treatment, adsorption, etc. But these processes are not much successful due to the issue of recycling which enhances the cost. Alternatively, the membrane separation process for the treatment of dye in wastewater is already documented as the best available technique. Polymeric membrane and ceramic membrane are two separate groups of separation membranes. Advantages of ceramic membranes include the ease of cleaning, long lifetime, good chemical and thermal resistance, and mechanical stability. Ceramic membranes can be prepared from various sources and natural materials like clay, zeolite, and fly ash are very cheap and easily available. In this review separation of wastewater is classified into mainly three groups: ultrafiltration (UF), microfiltration (MF), and nanofiltration (NF) process.