• 제목/요약/키워드: chemical binding

검색결과 1,354건 처리시간 0.03초

Chemical kinomics: a powerful strategy for target deconvolution

  • Kim, Do-Hee;Sim, Tae-Bo
    • BMB Reports
    • /
    • 제43권11호
    • /
    • pp.711-719
    • /
    • 2010
  • Kinomics is an emerging and promising approach for deciphering kinomes. Chemical kinomics is a discipline of chemical genomics that is also referred to as "chemogenomics", which is derived from chemistry and biology. Chemical kinomics has become a powerful approach to decipher complicated phosphorylation-based cellular signaling networks with the aid of small molecules that modulate kinase functions. Moreover, chemical kinomics has played a pivotal role in the field of kinase drug discovery as it enables identification of new molecular targets of small molecule kinase modulators and/or exploitation of novel functions of known kinases and has also provided novel chemical entities as hit/lead compounds. In this short review, contemporary chemical kinomics technologies such as activity-based protein profiling, T7 kinasetagged phages, kinobeads, three-hybrid systems, fluorescenttagged kinase binding assays, and chemical genomic profiling are discussed along with a novel allosteric Bcr-Abl kinase inhibitor (GNF-2/GNF-5) as a successful application of chemical kinomics approaches.

Are Bound Residues a Solution for Soil Decontamination\ulcorner

  • Bollag, Jean-Marc
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 International Symposium
    • /
    • pp.111-124
    • /
    • 2003
  • 기존의 오염물질을 제거하는 많은 화학적-물리적 정화 방법은 고비용과 오랜 시간을 요구하는 처리 과정 등의 단점을 갖고 있는 경우가 많았다. 따라서 흙과 수(水)환경내로 유입된 오염물질을 빠른 시간 내에 제거 할 수 있는 대안이 요구 되었다. 흙에 유출된 화합 물질 중 상당양은 흙에 의해 격리, 구속되고 이로 인해 일단 구속된 오염물질은 물과 유기 용매에 의해서도 잘 추출되지 않는 것으로 보고 되고 있다. 이러한 흙에 의한 오염물질의 비유동성(immobilization) 과정은 오염물질의 제거 기술의 대안으로 평가 될 수 있다. 기존 연구자들의 연구 결과, 화학적 혹은 물리적 반응 작용을 통해 오염물질을 흙을 구성하는 물질에 구속할 수 있음이 증명되었다. 이러한 과정 중 환경적 측면에서 볼 때, 화학적 반응이 더 우수하다 할 수 있다. 이는 강한 공유결합(covalent bonds)으로 연결될 경우 미생물의 활동이나 화학 처리로도 이를 분리하기 어렵기 때문이다. 리그닌(lignin) 분해에서 발생하는 휴믹(humic) 물질 등이 안정 된 화학적 연결을 통해 흙 매질 내에 오염물질과 결합하는 대표적 물질이다. 인위적으로 제조된 많은 화학물질은 자연적에서 발생하는 휴민산 발생원(humic acid precursors)과 닮았다. 따라서 화학물은 부식 과정(humifications process)동안 부식토(humus) 내로 병합(incorporate)되어 진다. 일단 이렇게 구성된 결합체는 생물체와 오염물질과의 반응을 방지하여 오염물질로 인한 생물체로의 독성을 감소시키는 역할을 하게 된다. 본 논문에서는 이러한 흙의 유기물(organic matter)와 오염물질과의 결합체에 대한 평가로서 다음의 항목에 대한 고찰이 이루어져야 함을 강조하였다. (a)결합체에서 생물체(biota)와의 반응에 의해 오염물질은 감소되는가\ulcorner (b) 모(parent) 화합물과 비교하여 복합체 생성물(complexed products)이 얼마나 덜 유독한가\ulcorner 그리고 (c)지하수 오염이 오염물질의 유동성 구속에 의해 얼마나 감소되는지\ulcorner

  • PDF

Novel Naphthalene Based Lariat-Type Crown Ethers Using Direct Single Electron Transfer Photochemical Strategy

  • Park, Hea Jung;Sung, Nam Kyung;Kim, Su Rhan;Ahn, So Hyun;Yoon, Ung Chan;Cho, Dae Won;Mariano, Patrick S.
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권12호
    • /
    • pp.3681-3689
    • /
    • 2013
  • This study explored a direct SET-photochemical strategy to construct a new family of thioene conjugated-naphthalamide fluorophore based lariat-crown ethers which show strong binding properties towards heavy metal ions. Irradiations of designed nitrogen branched (trimethylsilyl)methylthio-terminated polyethylenoxy-tethered naphthalimides in acidic methanol solutions have led to highly efficient photocyclization reactions to generate naphthalamide based lariat type thiadiazacrown ethers directly in chemo- and regio-selective manners which undergo very facile secondary dehydration reactions during separation processes to produce their corresponding amidoenethio ether cyclic products tethered with electron donating diethyleneoxy- and diethyenethio-side arm chains. Fluorescence and metal cation binding properties of the lariat type enamidothio products were examined. The photocyclized amidoenethio products, thioene conjugated naphthalamide fluorophore containing lariat-thiadiazacrowns exhibited strong fluorescence emissions in region of 330-450 nm along with intramolecular exciplex emissions in region of 450-560 nm with their maxima at 508 nm. Divalent cation $Hg^{2+}$ and $Pb^{2+}$ showed strong binding to sulfur atom(s) in side arm chain and atoms in enethiadiazacrown ether rings which led to significant enhancement of fluorescence from its chromophore singlet excited state and concomitant quenching of exciplex emission. The dual fluorescence emission responses towards divalent cations might provide a new guide for design and development of fluorescence sensors for detecting those metals.

화학적으로 변형된 하수슬러지를 이용한 반응성염료의 생물흡착 (Biosorption of Reactive Dyes using Chemically Modified Sewage Sludge)

  • 한민희;최기욱;윤영상
    • 청정기술
    • /
    • 제13권3호
    • /
    • pp.215-221
    • /
    • 2007
  • 생물흡착은 염색폐수로부터 염료를 제거하기 위한 기술로서 현재 사용되고 있는 기술을 대체할 수 있는 유망한 처리 방법이다. 본 연구에서는 생물흡착제로써 저가이면서 풍부한 소재중의 하나인 하수 슬러지를 이용하였다. 본 연구의 목적은 바이오매스의 변형을 통하여 흡착능력을 향상시키는데 있다. FT-IR 분석과 적정실험을 통하여 흡착에 관여하는 작용기는 카르복실 그룹, 인산 그룹, 아민 그룹으로 판명하였으며 그 중에서 반응성 염료(Reactive Red 4, RR 4)를 흡착할 수 있는 작용기는 아민 그룹임을 알 수 있었다. 또한 음이온성 염료인 RR 4의 흡착을 저해하는 것으로 생각되는 카르복실 그룹을 제거함으로써 흡착성능을 향상시킬 수 있었다. 그 결과, 카르복실 그룹이 제거된 바이오매스의 최대 흡착량이 변형 전에 비해 pH 2에서는 130%, pH 4에서는 210% 증가하였다. 그러므로 화학적으로 변형시킨 하수 슬러지는 산업폐수내 염료제거에 효과적이면서 값싼 생물흡착제로 이용될 수 있을 것으로 기대된다.

  • PDF

Active Phytochemicals of Indian Spices Target Leading Proteins Involved in Breast Cancer: An in Silico Study

  • Ashok Kumar Krishnakumar;Jayanthi Malaiyandi;Pavatharani Muralidharan;Arvind Rehalia;Anami Ahuja;Vidhya Duraisamy;Usha Agrawal;Anjani Kumar Singh;Himanshu Narayan, Singh;Vishnu Swarup
    • 대한화학회지
    • /
    • 제68권3호
    • /
    • pp.151-159
    • /
    • 2024
  • Indian spices are well known for their numerous health benefits, flavour, taste, and colour. Recent Advancements in chemical technology have led to better extraction and identification of bioactive molecules (phytochemicals) from spices. The therapeutic effects of spices against diabetes, cardiac problems, and various cancers has been well established. The present in silico study aims to investigate the binding affinity of 29 phytochemicals from 11 Indian spices with two prominent proteins, BCL3 and CXCL10 involved in invasiveness and bone metastasis of breast cancer. The three-dimensional structures of 29 phytochemicals were extracted from PubChem database. Protein Data Bank was used to retrieve the 3D structures of BCL3 and CXCL10 proteins. The drug-likeness and other properties of compounds were analysed by ADME and Lipinski rule of five (RO5). All computational simulations were carried out using Autodock 4.0 on Windows platform. The proteins were set to be rigid and compounds were kept free to rotate. In-silico study demonstrated a strong complex formation (positive binding constants and negative binding energy ΔG) between all phytochemicals and target proteins. However, piperine and sesamolin demonstrated high binding constants with BCL3 (50.681 × 103 mol-1, 137.76 × 103 mol-1) and CXCL10 (98.71 × 103 mol-1, 861.7 × 103 mol-1), respectively. The potential of these two phytochemicals as a drug candidate was highlighted by their binding energy of -6.5 kcal mol-1, -7.1 kcal mol-1 with BCL3 and -6.9 kcal mol-1, -8.2 kcal mol-1 with CXCL10, respectively coupled with their favourable drug likeliness and pharmacokinetics properties. These findings underscore the potential of piperine and sesamolin as drug candidates for inhibiting invasiveness and regulating breast cancer metastasis. However, further validation through in vitro and in vivo studies is necessary to confirm the in silico results and evaluate their clinical potential.

Synthesis and Properties of Calix[4]crown-6 Functionalized Polymers

  • Kim Su-Han;Lee Chil-Won;Jeon Young-Min;Gong Myoung-Seon
    • Macromolecular Research
    • /
    • 제13권2호
    • /
    • pp.141-146
    • /
    • 2005
  • Calix[4]crown-6-2,4-bis(4-aminobutyl ether), which has a crown-6 moiety at the 1,3-position and amino function at the 2,4-position, was prepared as an intermediate for the subsequent synthesis of calix[4]crown-6-containing polyamide and polyimide using adipoyl chloride and 1,2,4,5-benzenetetracarboxylic dianhydride. The chemical structures were characterized by IR, $^{1}H NMR$ spectroscopy and elemental analysis, and some of their physical properties, including their thermal behavior, were examined. The ion binding characteristics of the monomer and polymers for alkali metal and alkali earth metal ions were measured by liquid-liquid extraction from the aqueous phase into the organic phase. It has been observed that polyamide has a high binding ability towards various metal cations as compared to polyimide, which showed cesium ion selectivity.

Preparation and Oxygen Binding Properties of Ultra-Thin Polymer Films Containing Cobalt(II) meso-Tetraphenylporphyrin via Plasma Polymerization

  • Choe, Youngson
    • Macromolecular Research
    • /
    • 제10권5호
    • /
    • pp.273-277
    • /
    • 2002
  • Ultra-thin polymer films containing cobalt(II) meso-tetraphenylporphyrin(CoTPP) have been prepared by vacuum codeposition of the metal complex and trans-2-butene as an organic monomer using an inductively coupled RF glow discharge operating at 7-9 Watts. The polymer films were characterized by sorption measurements. Sorption data obtained for polymer films containing CoTPP indicate that the CoTPP molecules are capable of reversibly binding oxygen molecules. It was found that the adjacent CoTPP molecules in the aggregated metal complex phase could irreversibly share the oxygen molecules. A dispersion of the metal complex molecules in the polymer matrix was made to maintain the reversible reactivity of the metal complex molecules with oxygen in the polymer films via vacuum evaporation process. The Henry mode solubility constant, the Langmuir mode capacity constant, the amount of binding oxygen, and the dissociation equilibrium in the dual mode sorption theory were discussed.

The Potentiometric Performances of the Cation Selective Electrodes based on Tetracycline and Chemically Modified Tetracycline

  • Kang, Sang-Hyuk;Rhee, In-Sook;Paeng, Ki-Jung
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권3호
    • /
    • pp.143-145
    • /
    • 2011
  • Metal-binding antibiotics are very attractive choices as cation selective ionophores. The ability of tetracycline (TC) antibiotics to bind to metal ions has obtained much attention. TCs exhibit the potentiometric performance changes for various cations dependant on several experiment conditions. In this report, we investigated the potentiometric performance changes of TC as the modification of TC's possible metal binding site. We found that the selectivity alter with the blocking main binding site of ionophores for cations. And, additionally it is possible to control the selectivity of sensors with chemical modification of ionophores.

A Study on the Preparation Method of Geopolymeric Concrete using Specifically Modified Silicate and Inorganic Binding Materials and Its Compressive Strength Characteristics

  • Kim, Jong Young
    • 한국세라믹학회지
    • /
    • 제52권2호
    • /
    • pp.150-153
    • /
    • 2015
  • Recently, research on geopolymeric concrete that does not use cement as a binder has been actively investigated. Geopolymeric concrete is cement-free concrete. Masato, ocher and/or soil has been solidified into geopolymeric concrete by the reaction of specifically modified silicate as an alkali activator and inorganic binding materials such as blast furnace slag, fly ash or meta-kaolin, which is cured at room temperature to exhibit high compressive strengths. Based on the results, this study shows how geopolymeric concrete that uses specifically modified silicate and inorganic binding materials is implemented as eco-cement with no cement.

Quantum chemical investigations on bis(bora)calix[4]arene: a fluorescent fluoride sensor

  • Jin, Jae Hyeok;Lee, Yoon Sup
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제2회(2013년)
    • /
    • pp.77-88
    • /
    • 2013
  • The computational study on the fluoride ion binding with bis(bora)calix[4]arene has been performed using density functional theory and ONIOM model. The computed structure and fluorescent behavior of bis(bora)calix[4]arene was corresponded to experiment value. The binding energy for fluoride anion is computed to be 28.05kJ/mol in the chloroform solution. We also predicted that this sensing mechanism is only valid for fluoride ion in halogens. By analyzing molecular orbitals, binding with fluoride ion reduces energy differences between HOMO and LUMO, which leads to fluorescent sensing.

  • PDF