• Title/Summary/Keyword: chemical binding

Search Result 1,356, Processing Time 0.02 seconds

The design and characteristic of the TiNx optical film for ARAS coating (ARAS용 TiNx 광학박막의 설계제작과 특성연구)

  • Park, Moon-Chan;Jung, Boo-Young;Hwangbo, Chang-Kwon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.2
    • /
    • pp.31-35
    • /
    • 2001
  • The anti-reflective anti-static(ARAS) optical film Was designed using conducting layer $TiN_x$ by Essential Macleod program. From this results, [air ${TiN_x{\mid}SiO_2{\mid}$ glass] two layer shows wide-band AR coating in the wavelength range of 450~700 nm. The $TiN_x$ thin films were prepared on the glass substrate by RF(radio-freqency) magnetron sputtering apparatus from a Ti target in agaseous mixture of argon and nitrogen with the thickness of 7~10 nm. For the films obtained, the chemical binding energy of the films was investigated by x-ray photoelectron spectroscopy(XPS) in order to analyze the chemical nature and composition of the films. In addition, we investigated the relationship between the surface resistance and the chemical nature the sheet resistance and XPS depth profiling the chemical binding of the films.

  • PDF

Influence of kneading ratio on the binding interaction of coke aggregates on manufacturing a carbon block

  • Kim, Jong Gu;Kim, Ji Hong;Bai, Byong Chol;Choi, Yun Jeong;Im, Ji Sun;Bae, Tae-Sung;Lee, Young-Seak
    • Carbon letters
    • /
    • v.28
    • /
    • pp.24-30
    • /
    • 2018
  • Coke aggregates and carbon artifacts were produced to investigate the interactions of coke and pitch during the kneading process. In addition, the kneading ratio of the coke and binder pitch for the coke aggregates was controlled to identify the formation of voids and pores during carbonization at $900^{\circ}C$. Experiments and thermogravimetric analysis revealed that carbon yields were improved over the theoretical yield calculated by the weight loss of the coke and binder pitch; the improvement was due to the binding interactions between the coke particles and binder pitch by the kneading process. The true, apparent, and bulk densities fluctuated according to the kneading ratio. This study confirmed that an excessive or insufficient kneading ratio decreases the density with degradation of the packing characteristics. The porosity analysis indicated that formation of voids and pores by the binder pitch increased the porosity after carbonization. Image analysis confirmed that the kneading ratio affected the formation of the coke domains and the voids and pores, which revealed the relations among the carbon yields, density, and porosity.

Reversal of Multidrug Resistance in Mouse Lymphoma Cells by Extracts and Flavonoids from Pistacia integerrima

  • Rauf, Abdur;Uddin, Ghias;Raza, Muslim;Ahmad, Bashir;Jehan, Noor;Siddiqui, Bina S;Molnar, Joseph;Csonka, Akos;Szabo, Diana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.1
    • /
    • pp.51-55
    • /
    • 2016
  • Phytochemical investigation of Pistacia integerrima has highlighted isolation of two known compounds naringenin (1) and dihydrokaempferol (2). A crude extract and these isolated compounds were here evaluated for their effects on reversion of multidrug resistance (MDR) mediated by P-glycoprotein (P-gp). The multidrug resistance P-glycoprotein is a target for chemotherapeutic drugs from cancer cells. In the present study rhodamine-123 exclusion screening test on human mdr1 gene transfected mouse gene transfected L5178 and L5178Y mouse T-cell lymphoma cells showed excellent MDR reversing effects in a dose dependent manner. In-silico molecular docking investigations demonstrated a common binding site for Rhodamine123, and compounds naringenin and dihydrokaempferol. Our results showed that the relative docking energies estimated by docking softwares were in satisfactory correlation with the experimental activities. Preliminary interaction profile of P-gp docked complexes were also analysed in order to understand the nature of binding modes of these compounds. Our computational investigation suggested that the compounds interactions with the hydrophobic pocket of P-gp are mainly related to the inhibitory activity. Moreover this study s a platform for the discovery of novel natural compounds from herbal origin, as inhibitor molecules against the P-glycoprotein for the treatment of cancer.

Comparative Study on the Mixed Micellizations of Anionic Surfactant (DBS) with Nonionic Surfactnats (Brij 30 and Brij 35) (음이온성 계면활성제(DBS)와 비이온성 계면활성제(Brij 30과 Brij 35)와의 혼합미셀화에 대한 비교연구)

  • Park, In-Jung;Lee, Byung-Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.5
    • /
    • pp.491-498
    • /
    • 2009
  • The critical micelle concentration (CMC) and the counter ion binding constant (B) for the mixed micellizations of DBS (sodium dodecylbenzenesulfonate) with Brij 30 (polyoxyethylene(4) lauryl ether) and Brij 35 (polyoxyethylene (23) lauryl ehter) at 25 ${^{\circ}C}$ in pure water and in aqueous solutions of n-butanol were determined as a function of $\alpha$1 (the overall mole fraction of DBS) by the use of electric conductivity method. Various thermodynamic parameters (Xi, $\gamma$i, Ci, aiM, $\beta$, and ${\Delta}H_{mix}$) were calculated and compared for each mixed surfactant system by means of the equations derived from the nonideal mixed micellar model. There sults show that the molecules of DBS interact more strongly with Brij 35 than Brij 30 and that the DBS/Brij35 mixed system has greater negative deviation from the ideal mixed micellar model than the DBS/Brij 30mixed system.

Development of Inhibitors against TraR Quorum-Sensing System in Agrobacterium tumefaciens by Molecular Modeling of the Ligand-Receptor Interaction

  • Kim, Cheoljin;Kim, Jaeeun;Park, Hyung-Yeon;Park, Hee-Jin;Kim, Chan Kyung;Yoon, Jeyong;Lee, Joon-Hee
    • Molecules and Cells
    • /
    • v.28 no.5
    • /
    • pp.447-453
    • /
    • 2009
  • The quorum sensing (QS) inhibitors that antagonize TraR, a receptor protein for N-3-oxo-octanoyl-L-homoserine lactones (3-oxo-C8-HSL), a QS signal of Agrobacterium tumefaciens were developed. The structural analogues of 3-oxo-C8-HSL were designed by in silico molecular modeling using SYBYL packages, and synthesized by the solid phase organic synthesis (SPOS) method, where the carboxamide bond of 3-oxo-C8-HSL was replaced with a nicotinamide or a sulfonamide bond to make derivatives of N-nicotinyl-L-homoserine lactones or N-sulfonyl-L-homoserine lactones. The in vivo inhibitory activities of these compounds against QS signaling were assayed using reporter systems and compared with the estimated binding energies from the modeling study. This comparison showed fairly good correlation, suggesting that the in silico interpretation of ligand-receptor structures can be a valuable tool for the pre-design of better competitive inhibitors. In addition, these inhibitors also showed anti-biofilm activities against Pseudomonas aeruginosa.

Effects of Suspended Solids, pH and Salinity on the Chemical Fate of Oxolinic Acid in the Aquatic Environment (해양환경에서 부유물질, 염분 및 pH의 옥소린산 화학적 거동에 미치는 영향)

  • Yoon Duk-Hyun;Kim Mu-Chan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.2 s.25
    • /
    • pp.99-106
    • /
    • 2006
  • The fate of chemical pollutants in the aquatic environment is generally considered to be strongly influenced by environmental factors such as pH, salinity and electrostatic charges on the surface of particles ai well as by the characteristic of chemicals. Oxolinic acid was measured by chemical analysis using HPLC to determine the effect of salinity, pH and suspended solids on chemical binding and by bioassay for measuring bioactivity. The higher contentration of suspended solids in the medium, the lower concentration of oxolinic and was detected in measurements from by both HPLC and biosssay analysis. This indicates particle may have a stronger binding or absorption effect on oxolinic acid. Bioassay analysis showed weaker bioacivity at higher salinity and pH 7.0, but this result of bioassay analysis was different from the result of HPLC.

  • PDF

Selection and Analysis of Genomic Sequence-Derived RNA Motifs Binding to C5 Protein

  • Kim, Kwang-sun;Ryoo, Hye-jin;Lee, June-Hyung;Kim, Mee-hyun;Kim, Tae-yeon;Kim, Yool;Han, Kook;Lee, Seol-Hoon;Lee, Young-hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.699-704
    • /
    • 2006
  • Escherichia coli RNase P is a ribonucleoprotein composed of M1 RNA and C5 protein. Previously, analysis of RNA aptamers selected for C5 protein from a synthetic RNA library showed that C5 protein could bind various RNA molecules as an RNA binding protein. In this study, we searched cellular RNA motifs that could be recognized by C5 protein by a genomic SELEX approach. We found various C5 protein-binding RNA motifs derived from E. coli genomic sequences. Our results suggest that C5 protein interacts with various cellular RNA species in addition to M1 RNA.

Studies on the Influence of Mercaptoacetic Acid (MAA) Modification of Cassava (Manihot sculenta Cranz) Waste Biomass on the Adsorption of Cu2+ and Cd2+ from Aqueous Solution

  • Horsfall, M. Jnr.;Spiff, A.I.;Abia, A.A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.969-976
    • /
    • 2004
  • Cassava peelings waste, which is both a waste and pollutant, was chemically modified using mercaptoacetic acid (MAA) and used to adsorb $Cu^{2+}\;and\;Cd^{2+}$ from aqueous solution over a wide range of reaction conditions at $30^{\circ}C$. Acid modification produced a larger surface area, which significantly enhanced the metal ion binding capacity of the biomass. An adsorption model based on the $Cu^{2+}/Cd^{2+}$ adsorption differences was developed to predict the competition of the two metal ions towards binding sites for a mixed metal ion system. The phytosorption process was examined in terms of Langmuir, Freundlich and Dubinin-Radushkevich models. The models indicate that the cassava waste biomass had a greater phytosorption capacity, higher affinity and greater sorption intensity for $Cu^{2+}\;than\;Cd^{2+}$. According to the evaluation using Langmuir equation, the monolayer binding capacity obtained was 127.3 mg/g $Cu^{2+}$ and 119.6 mg/g $Cd^{2+}$. The kinetic studies showed that the phytosorption rates could be described better by a pseudo-second order process and the rate coefficients was determined to be $2.04{\times}10^{-3}\;min^{-1}\;and\;1.98{\times}10^{-3}\;min^{-1}\;for\;Cu^{2+}\;and\;Cd^{2+}$ respectively. The results from these studies indicated that acid treated cassava waste biomass could be an efficient sorbent for the removal of toxic and valuable metals from industrial effluents.

Structural, Electrochemical, DNA Binding and Cleavage Properties of Nickel(II) Complex [Ni(H2biim)2(H2O)2]2+ of 2,2'-Biimidazole

  • Jayamani, Arumugam;Thamilarasan, Vijayan;Ganesan, Venketasan;Sengottuvelan, Nallathambi
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3695-3702
    • /
    • 2013
  • A nickel(II) complex $[Ni(H_2biim)_2(H_2O)_2](ClO_4)_2{\cdot}H_2O$ (1) of biimidazole ligand has been synthesized and characterized (Where $H_2biim$ = 2,2'-biimidazole). The single crystal X-ray diffraction of the complex shows a dimeric structure with six coordinated psudo-octahedral geometry. The cyclic voltammograms of complex exhibited one quasireversible reduction wave ($E_{pc}=-0.61V$) and an irreversible oxidation wave ($E_{pa}=1.28V$) in DMF solution. The interaction of the complex with Calf-Thymus DNA (CT-DNA) has been investigated by absorption and fluorescence spectroscopy. The complex is an avid DNA binder with a binding constant value of $1.03{\times}10^5M^{-1}$. The results suggest that the nickel(II) complex bind to CT-DNA via intercalative mode and can quench the fluorescence intensity of EB bind to CT-DNA with $K_{app}$ value of $3.2{\times}10^5M^{-1}$. The complex also shown efficient oxidative cleavage of supercoiled pBR322 DNA in the presence of hydrogen peroxide as oxidizing agent. The DNA cleavage by complex in presence of quenchers; viz. DMSO, KI, $NaN_3$ and EDTA reveals that hydroxyl radical or singlet oxygen mechanism is involved. The complex showed invitro antimicrobial activity against four bacteria and two fungi. The antimicrobial activity was nearer to that of standard drugs and greater than that of the free ligand.

Cloning, Expression, and Characterization of UDP-glucose Pyrophosphorylase from Sphingomonas chungbukensis DJ77

  • Yoon, Moon-Young;Lee, Kyoung-Jin;Park, Hea-Chul;Park, Sung-Ha;Kim, Sang-Gon;Kim, Sung-Kun;Choi, Jung-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.6
    • /
    • pp.1360-1364
    • /
    • 2009
  • The bacterium Sphingomonas chungbukensis DJ77 produces the extracellular polysaccharide gellan in high yield. Gellan produced by this bacterium is widely used as a gelling agent, and the enzyme UDP-glucose pyrophosphorylase (UGP) is thought to play a key role in the gellan biosynthetic pathway. The UGP gene has been successfully cloned and over-expressed in E. coli. The expressed enzyme was purified with a molecular weight of approximately 32 kDa, as determined by a SDS-polyacrylamide gel, but the enzyme appears as ca. 63 kDa on a native gel, suggesting that the enzyme is present in a homodimer. Kinetic analysis of UDP-glucose for UGP indicates $K_m$ = 1.14 mM and $V_{max}$ = 10.09 mM/min/mg at pH 8.0, which was determined to be the optimal pH for UGP catalytic activity. Amino acid sequence alignment against other bacteria suggests that the UGP contains two conserved domains: An activator binding site and a glucose-1-phosphate binding site. Site-directed mutagenesis of Lys194, located within the glucose-1-phosphate binding site, indicates that substitution of the charge-reversible residue Asp for Lys194 dramatically impairs the UGP activity, supporting the hypothesis that Lys194 plays a critical role in the catalysis.