Influence of kneading ratio on the binding interaction of coke aggregates on manufacturing a carbon block |
Kim, Jong Gu
(Carbon Industry Frontier Research Center, Korea Research Institute of Chemical Technology (KRICT))
Kim, Ji Hong (Carbon Industry Frontier Research Center, Korea Research Institute of Chemical Technology (KRICT)) Bai, Byong Chol (Korea Institute of Convergence Textile) Choi, Yun Jeong (Carbon Industry Frontier Research Center, Korea Research Institute of Chemical Technology (KRICT)) Im, Ji Sun (Carbon Industry Frontier Research Center, Korea Research Institute of Chemical Technology (KRICT)) Bae, Tae-Sung (Jeonju Center, Korea Basic Science Institute) Lee, Young-Seak (Institute of Carbon Fusion Technology, Chungnam National University) |
1 | Wissler M. Graphite and carbon powders for electrochemical applications. J Power Sources, 156, 142 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.064. DOI |
2 | Kawano Y, Fukuda T, Kawarada T, Mochida I, Korai Y. Suppression of puffing during the graphitization of pitch needle coke by boric acid. Carbon, 37, 555 (1999). https://doi.org/10.1016/s0008-6223(98)00221-8. DOI |
3 | Fukushima H, Drzal LT, Rook BP, Rich MJ. Thermal conductivity of exfoliated graphite nanocomposites. J Ther Anal Calorim, 85, 235 (2006). https://doi.org/10.1007/s10973-005-7344-x. DOI |
4 | Fujimoto KI, Mochida I, Todo Y, Oyama T, Yamashita R, Marsh H. Mechanism of puffing and the role of puffing inhibitors in the graphitization of electrodes from needle cokes. Carbon, 27, 909 (1989). https://doi.org/10.1016/0008-6223(89)90041-9. DOI |
5 | Ishiyama S, Burchell TD, Strizak JP, Eto M. The effect of high fluence neutron irradiation on the properties of a fine-grained isotropic nuclear graphite. J Nucl Mater, 230, 1 (1996). https://doi.org/10.1016/0022-3115(96)00005-0. DOI |
6 | Qin M, Feng Y, Ji T, Feng W. Enhancement of cross-plane thermal conductivity and mechanical strength via vertical aligned carbon nanotube@graphite architecture. Carbon, 104, 157 (2016). https://doi.org/10.1016/j.carbon.2016.04.001. DOI |
7 | Liu Z, Guo Q, Shi J, Zhai G, Liu L. Graphite blocks with high thermal conductivity derived from natural graphite flake. Carbon, 46, 414 (2008). https://doi.org/10.1016/j.carbon.2007.11.050. DOI |
8 | Lu Y, Kocaefe D, Kocaefe Y, Huang XA, Bhattacharyay D, Coulombe P. Study of the wettability of coke by different pitches and their blends. Energy Fuels, 30, 9210 (2016). https://doi.org/10.1021/acs.energyfuels.6b01891. DOI |
9 | Zhong B, Zhao GL, Huang XX, Liu J, Tang XH, Wen GW, Wu Y. Binding natural graphite with mesophase pitch: a promising route to future carbon blocks. Mater Sci Eng A, 610, 250 (2014). https://doi.org/10.1016/j.msea.2014.05.038. DOI |
10 | Manocha LM, Bahl OP. Influence of carbon fiber type and weave pattern on the development of 2D carbon-carbon composites. Carbon, 26, 13 (1988). https://doi.org/10.1016/0008-6223(88)90004-8. DOI |
11 | Hatano H, Suginobe H. Improvement and control of the quality of binder pitch for graphite electrodes. Fuel, 68, 1503 (1989). https://doi.org/10.1016/0016-2361(89)90287-1. DOI |
12 | Kim JG, Kim JH, Song BJ, Jeon YP, Lee CW, Lee YS, Im JS. Characterization of pitch derived from pyrolyzed fuel oil using TLC-FID and MALDI-TOF. Fuel, 167, 25 (2016). https://doi.org/10.1016/j.fuel.2015.11.050. DOI |
13 | Kim JG, Kim JH, Song BJ, Lee CW, Im JS. Synthesis and its characterization of pitch from Pyrolyzed fuel oil (PFO). J Ind Eng Chem, 36, 293 (2016). https://doi.org/10.1016/j.jiec.2016.02.014. DOI |