• 제목/요약/키워드: chemical admixtures

Search Result 117, Processing Time 0.026 seconds

The Physical Fluidity Properties of Concrete Containing Melamine and Naphthalene-type Superplasticizer (멜라민계 및 나프탈렌계 고유동화제가 함유된 콘크리트의 물리적 유동특성)

  • Yoon, Sung-Won;Choi, Byoung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.457-460
    • /
    • 2008
  • It was predicted that the most recent technological developments in concrete technology rely on enhanced admixture efficiency rather than on improvement in cement manufacturing. Four major commercially available of organic chemical admixtures are modified lignosulfonates (LS), sulfonated naphthalene-formaldehyde resins (SNF), sulfonated melamine-formaldehyde resins(SMF) and polycarboxylate(PC). In this study, various sulfonated melamine-formaldehyde (SMF) superplasticizers were synthesized via four synthetic steps and reaction conditions such as the mole ratio of melamine to formaldehyde was changed. After application of SMF superplasticizer to cement concrete, the physical properties including workability, slump loss, compressive strength were compared with SNF

  • PDF

Hydration modeling of high calcium fly ash blended concrere (고칼슘 플라이애시 혼입한 콘크리트의 수화반응 모델에 관한 연구)

  • Fan, Wei-Jie;Wang, Xiao-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.48-49
    • /
    • 2015
  • High-calcium fly ash (FH) is widely used as mineral admixtures in concrete industry. In this paper, a hydration model is proposed to describe the hydration of high-calcium fly ash blended-cement. This model takes into account the hydration reaction of cement, the chemical reaction of fly ash, and reaction of free CaO in fly ash. Using the proposed model, the development of compressive strength of FH blended concrete is predicted using the amount of calcium silicate hydrate (CSH). The agreement between simulation and experimental results proves that the new model is quite effective.

  • PDF

An Experimental Study on the Salt Damage Resistance of High Durable Concrete (고내구성콘크리트의 염해저항성에 관한 실험적 연구)

  • Yoon, Jai-Hwan;Jaung, Jae-Dong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.3
    • /
    • pp.73-81
    • /
    • 2003
  • In this paper, salt damage resistance of high durable concrete was tested. High durable concrete was made by using low water cement ratio, chemical admixture called super-durable admixture and mineral admixtures such as fly-ash, ground granulated blast-furnace slag, silica fume. Two kinds of salt damage resistance test were carried out. One method is chloride ion penetration test(ASTM C1202), and the other one is depth of chloride penetration test in saline solution. Test results were as followers: 1) The depth of chloride ion penetration increased exponentially as water cement ratio was increased and time passed. 2) Super-durable admixture had little effect on the improvement of salt damage resistance of concrete. 3) Silica fume and ground granulated blast-furnace slag were effective on salt damage resistance because of pozzolanic reaction, but fly-ash had a little effect.

A Study About Chloride Penetration Considering Temperature, Humidity Distribution and Admixtures (온도.습도분포 및 혼화재를 고려한 염분침투에 관한 연구)

  • Choi, Jong-Kwon;Kim, Ki-Hyun;Cha, Soo-Won;Jang, Seung-Yup;Chang, Sung-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.553-556
    • /
    • 2006
  • Chloride penetration is the main reason which causes the deterioration of concrete structures. Chloride penetration of concrete structures due to chemical-physical phenomena can be profitably analyzed by means of model-based simulations. The main purpose of this paper is to analyze chloride penetration considering self-desiccation, convection and admixture(GBFS: granulated blast-furnace slag) effects. Basic governing equations are modified properly to apply these effects to chloride penetration analysis. Temperature and relative humidity data of In-Cheon from Korea Meteorological Administration are used for analyzing chloride penetration.

  • PDF

Properties of Mortar mixed with Lignocellulosic Combustion By-products (목질계 연소부산물 혼입 모르타르 물성 평가)

  • Jeong, Young-Dong;Kim, Min-Soo;Park, Won-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.77-78
    • /
    • 2023
  • This paper experimentally examined the recycling of combustion by-products emitted from a combined heat and power plant using lignocellulosic biomass fuel. Physical and chemical analyzes were performed on Bio-SRF and three types of wood pellet combustion by-product samples (fly-ash, FA). As a result of the experiment, the compressive strength of mortar substituted with 5, 10, and 20% of FA compared to the cement weight was found to be excellent, and its recyclability was confirmed as a substitute for existing admixtures.

  • PDF

Effect of Various Superplasticizers on the Hydration of Cement Paste (시멘트페이스트 수화 반응에 미치는 고유동화제의 영향성에 관한 연구)

  • Shin Jin-Yong;Kim Jae-Young;Hong Ji-Sook;Suh Jeong-Kwon;Lee Young-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.1019-1024
    • /
    • 2005
  • To research effects of various chemical superplasticizers(Lignosulfonic acid, Naphthalene sulfonated formaldehyde condensate, melamine sulfonated formaldehyde condensate, and Polycarboxylate) on the hydration of cement, experiments involving XRD, SEM, and DSC have been analysed with cement paste specimens. Regardless of types and dosages of superplasticizers, hydration reaction of specimen applied superplasticizer was delayed to 3 day, but then it showed similarity to plain which don't add superplasticizer. Moreover, the hydrating rate of cement paste was retarded as dosage of superplasticizer was increased. Also, kinetics related with hydrate of cement paste was slow in order of lignosulfonic acid, polycarboxylate, melamine and naphthalene sulfonated formaldehyde condensate. Nevertheless, when all kinds of chemical admixtures were used, morphologies of these hydrates were denser and more uniform than those of plain.

Influence of $Na_2SO_4$ on Cement-flyash Paste and the Strength Development of Concrete ($Na_2SO_4$가 시멘트-플라이애쉬 페이스트 및 콘크리트 강도에 미치는 영향)

  • Lee, Chin-Yong;Bae, Sung-Yong;Song, Jong-Taek
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.85-94
    • /
    • 1999
  • It was investigated to evaluate the characteristics of cement-flyash paste which was affected the replacement level, curing method and chemical admixtures. The strength of cement-flyash paste was lower than that of cement paste only and the differences increased with increasing the replacement level. However, in steam curing, the strength of cement-flyash pastes was improved and specially, the early strength was effectively increased. The inclusion of $Na_2SO_4$ increased the early strength of cement-flyash paste. In addition, the strength of concrete including 30% of fly ash and $Na_2SO_4$ has improved and obtained the highest strength compared to other concrete mixes.

Physical and Chemical Properties of Nano-slag Mixed Mortar

  • Her, Jae-Won;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.6
    • /
    • pp.145-154
    • /
    • 2010
  • As buildings have become higher and larger, the use of high performance concrete has increased. With this increase, interest in and use of ultra fine powder admixture is also on the rise. The silica fume and BSF are the admixtures currently being used in Korea. However, silica fume is exclusively import dependent because it is not produced in Korea. In the case of BFS, it greatly improves concrete fluidity and long-term strength. But a problem exists in securing early strength. Furthermore, air-cooled slag is being discarded, buried in landfills, or used as road bed materials because of its low activation energy. Therefore, we investigated in this study the usability of nano-slag (both rapidly-chilled and air-cooled) as an alternative material to the silica fume. We conducted a physic-chemical analysis for the nano-slag powder and performed a mortar test to propose quality standards. The analysis and testing were done to find out the industrial usefulness of the BFS that has been grinded to the nano-level.

Effects of Chemical Admixture on the Quality Characteristics of Grout for Prestressed Concrete (화학 혼화제가 PSC용 그라우트 품질 특성에 미치는 영향)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Ahn, Ki-Hong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.68-75
    • /
    • 2017
  • The study investigates the effects of the content and using method of chemical admixtures such as superplasticizer and viscosity modifying admixture on the fluidity, bleeding ratio, volumetric change and compressive strength of the grout in order to provide basic data for the development of high-quality grout for prestressed concrete. It appeared that the combination of superplasticizer and viscosity modifying admixture decreased the fluidity of grout with small content of superplasticizer. On the contrary, Grout used more than 0.1% of superplasticizer appeared to have significant effect on the improvement of the fluidity. On the other hand, bleeding of grout reduced according to increasing the content of viscosity modifying admixture. Superplasticizer with less than 0.05% had practically no effect on the reduction of bleeding, whereas superplasticizer with more than 0.1% appear to have significant effect on the reduction of bleeding. Also the combination of superplasticizer with 0.15% and viscosity modifying admixture with 0.15% resulted in satisfactory fluidity accompanied with fair reduction of bleeding and shrinkage of the grout.

The Physical Fluidity Properties of Cement Containing Melamine-type Superplasticizer Obtained with Various Synthetic Conditions (다양한 합성조건에서 얻어진 멜라민계 고유동화제가 함유된 시멘트의 물리적 유동특성)

  • Yoon, Sung-Won;Lee, Bum-Jae
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.815-821
    • /
    • 2005
  • Three major commercially available organic chemical admixtures are modified lignosulfonates (LS), sulfonated naphthalene-formaldehyde resins (SNF) and sulfonated melamine-formaldehyde (SMF). In this study, various sulfonated melamine-formaldehyde (SMF) superplasticizers were synthesized via four synthetic steps including hydroxymethylation (Step 1), sulfonation (Step 2), polymerization (Step 3) and neutralization and stabilization (Step 4). In this synthesis, mole ratio of melamine to formaline and the amount of acid catalyst used were varied. The obtained SMF superplasticizers were applied to cement paste and mortar and their physical properties including workability, slump loss, compressive strength were investigated. Also their hydrate shapes were investigated by examining SEM images of the cured paste. It was found that the fluidity properties of cement were significantly influenced by the structure of SMF condensates.