• Title/Summary/Keyword: chemical abundance

Search Result 271, Processing Time 0.024 seconds

Chemical composition of Am stars: RR Lyn and $\rho$ Pup

  • Yushchenko, A.V.;Lee, J.J.;Kang, Y.W.;Doikov, D.N.
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.22.3-22.3
    • /
    • 2008
  • We present the results of the investigations of high dispersion spectra of two stars. These are the eclipsing binary RR Lyn, and $\rho$ Pup - the prototype of the group of pulsating variables. The spectra were obtained at 1.8 m Bohyuunsan observatory telescope, and 8.2 m VLT. We found the chemical composition. The both components of RR Lyn are Am stars (metallic line stars), but the abundance patterns of the components are not similar - the iron abundance and the abundances of other elements are surely different. For few elements the differences exceeds 1 dex. We found the abundances of 56 chemical elements in the atmosphere of $\rho$ Pup. This is one of the best stellar abundance patterns. It permits to investigate the role of the charge-exchange reactions in stellar atmospheres. These reactions can produce the abundance anomalies in the atmospheres of B-F type stars. These reactions can be one of the sources of galactic cosmic rays, and the reason of the braked rotation of A-F type chemically peculiar stars.

  • PDF

Early Chemical Evolution of the Milky Way Revealed by Ultra Metal-Poor ([Fe/H] < -4.0) Stars

  • Jeong, MiJi;Lee, Young Sun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.68.2-68.2
    • /
    • 2019
  • Chemical abundance ratios of ultra metal-poor (UMP; [Fe/H] < -4.0) stars can provide important constraints on the early chemical enrichment of the Milky Way (MW), associated with the nucleosynthesis processes that occurred during the evolution of their progenitors, which are presumably the first generation of stars. Despite their importance, only about thirty UMP stars have been discovered thus far. In an effort to identify such stars additionally, we selected UMP candidates from low-resolution (R ~ 2000) spectra from the Sloan Digital Sky Survey and Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST), and obtained with Gemini/GRACES high-resolution (R ~ 40,000) spectra of 15 UMP candidates. In this study, we present the results of the chemical abundance analysis of the UMP candidates. Furthermore, we compare the abundance patterns of our UMP stars with those of various metal-poor stars from literature to understand the early chemical evolution of the MW.

  • PDF

SPECTROSCOPIC STUDY ON RED GIANTS IN GLOBULAR CLUSTERS (구상성단 거성들의 분광 연구)

  • LEE SANG-GAK
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc1
    • /
    • pp.15-30
    • /
    • 2000
  • A large scatter of the chemical abundances among globular cluster red giants has been observed. Especially the chemical elements C, N, O, Na, Mg, and Al vary form star to star within globular clusters. Except for $\omega$ Cen and M22, most globular clusters could be considered to be monometallic of their iron peak elements within error ranges. The variations in light elements among globuar cluster giants appear much more pronounced than in field halo giants of comparable Fe-peak metallicity. It has been found that in general the nitrogen abundance is anticorrelated with both carbon and oxygen, while it is correlated with Na and AI. These intracluster abundance inhomogeneities can be interpreted either by mixing of nucleosythesized material from the deep stellar interior during the red giant branch phase of evolution or by inhomogeneities of primordially processed material, from which the stars were formed. The simple way of distingushing between two senarios is to obtain the element abundances of main-sequence stars in globular clusters, which are too faint for high resolution spectroscopic studies until now. Both 'evolutionary' and 'primodial' origins are accepted for explanations of abundance variations among red giants and CN-CH anticorrelations among main-sequence stars in globular clusters. This paper reviews chemical abundances of light elements among globular cluster giants, with brief reviews of cannonical stellar evolution of low mass stars after main-sequence and deep mixing for abundance variations of cluster giants, and a possible connection between deep mixing and second parameter.

  • PDF

Crop Effects on Soil Microorganism Activity and Community Composition in the Agricultural Environment (농경지에서 재배작물이 토양미생물활성 및 군집구성에 미치는 영향)

  • Bak, Gyeryeong;Lee, Jeong-Tae;Jee, Samnyu
    • Journal of Environmental Science International
    • /
    • v.30 no.5
    • /
    • pp.379-389
    • /
    • 2021
  • Soil microorganism activity in an agricultural field is affected by various factors including climate conditions, soil chemical properties, and crop cultivation. In this study, we elucidate the correlation between microorganism activity and agricultural environment factors using the dehydrogenase activity (DHA) value, which is one of the indicators of soil microbial activity. As a result, the various factors noted above were related to the DHA value. Annual rainfall, soil Mg2+, bacterial and fungal diversities, types of crops, developmental stages, seasons, and cultivation status were highly correlated with the DHA value. Furthermore, next-generation sequencing (NGS) analysis was used to identify that the type of crop affected soil microbial compositions of both bacteria and fungi. Soil used for soybean cultivation showed the highest relative abundance for Verrucomicrobia, Planctomycetes, and Acidobacteria but Actinobacteria and Firmicutes had the lowest relative abundance. In the case of soil used for potato cultivation, Actinobacteria had the highest relative abundance but Proteobacteria had the lowest relative abundance. Armatimonadetes showed the highest relative abundance in soil used for cabbage cultivation. Among the fungal communities, Mortierellomycota had the highest relative abundance for soybean cultivation but the lowest relative abundance for cabbage cultivation; further, Rozellomycota, Chytridiomycota, and Cercozoa had the highest relative abundance for cabbage cultivation. Basidiomycota had the highest relative abundance for potato cultivation but the lowest relative abundance for soybean cultivation.

CHEMICAL EVOLUTION OF THE GALAXY: RADIAL PROPERTIES

  • PARK BYEONG-GON;KANG YONG HEE;LEE SEE-WOO
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.1
    • /
    • pp.63-73
    • /
    • 1996
  • The previous study of chemical evolution of the Galaxy is extended to the radial properties of the Galactic disk. The present model includes radial dependency of the time-dependent bimodal IMF, radial flow of material in the disk, and the change of type I supernova explosion rate with radial distance from the disk center as model parameters and observed gas and stellar density distributions and metallicity abundance gradient as observational constraints. The results of two models in this study explain the observed gas and stellar density distributions well, with the slope of the gas density gradient in the region of 4.5 kpc$Y_1$ and -0.123dex/kpc in model $Y_2$, respectively, which fit well the observed gradient of -0.l1dex/kpc. The abundance gradient reproduced in model $Y_1$ is getting flatter with decreasing radius, while that in model $Y_2$ is getting steeper, which fits better the observed abundance gradient. This result shows the necessity of exponentially increasing type I supernova explosion rate with decreasing radius in order to explain the observed abundance gradient in the disk. The fitness of observed density distribution and star formation rate distribution justifies the reliability of time-dependent bimodal IMF as a compound quantitative chemical evolution model of the Galaxy. The temporal variations of metallicity gradients for carbon, nitrogen and oxygen are also shown.

  • PDF

Effect of Earthworms on Collembola Abundance in Temperate Forest Soil Ecosystem (온대 숲 토양 생태계에서 지렁이가 톡토기류 개체수에 미치는 영향)

  • Lee, Ju-Hyung;Park, Ji-Hyun;Yoo, Ji-Yeon;Han, Su-Hyun;Nam, Bo-Eun;Kim, Jae-Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.6
    • /
    • pp.97-106
    • /
    • 2010
  • Earthworm, a prominent ecosystem engineer within many terrestrial ecosystems, can exert profound influences on various abiotic/biotic environments through bioturbation processes such as burrowing, casting and mixing of litter and soil. In this study, we investigated how the presence or absence of earthworm (Oligochaeta) can alter the soil physico-chemical conditions and ultimately the distribution and abundance of Collembola which constitutes a large proportion of the soil fauna. During September 2010, soil organisms along with soil samples were collected from randomly installed 20 plots in Mt. Gwan-ak. We examined the differences in the abundance of Collembola among plot samples in respect to the presence/absence of earthworm and soil physico-chemical conditions (i.e., pH, $PO_4^{3-}$, $NO_3^{2-}$, organic matter (OM), electrical conductance and water content). Analysis of soil physico-chemical environment revealed a significantly higher organic matter content and electrical conductance in plots with earthworm compared to plots without earthworm. Abundance of Collembola were not only higher in plots with earthworm than in plots without earthworm, but were also positively correlated with availability of OM present in the environment. The results suggest that positive impacts of earthworm on the abundance of Collembola in this study may have been due to their ability to effectively modify soil physico-chemical conditions favored by Collembola. Such conspicuous influence of earthworm's activity on below-ground community suggests their potential significance in forest restoration or revegetation process.

Low-Resolution Spectroscopy for the Intriguing Globular Cluster NGC 2808 : Chemical abundance patterns among subpopulations

  • Hong, Seungsoo;Lim, Dongwook;Han, Sang-Il;Lee, Young-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.43.4-44
    • /
    • 2016
  • The presence of multiple stellar populations is now well established in most globular clusters (GCs) in the Milky Way. The origin of this phenomenon, however, is yet to be understood. In this respect, the study of NGC 2808, an intriguing GC which hosts subpopulations with extreme helium abundances, would help to resolve this problem. In order to investigate chemical abundance patterns among different subpopulations in this GC, we have performed low-resolution spectroscopy for the red-giant-branch (RGB) stars and measured CN & CH bands, and Ca line strength. We have identified at least three subpopulations from the CN abundance distribution. This GC shows CN-CH anti-correlation following the general trend among "normal" GCs. In addition, we have cross-matched our results with the high-resolution data in literature, and found a tight correlation between CN strength and sodium abundance. However, CN is anticorrelated with oxygen abundance, as expected from the well known N(&Na)-O anticorrelation. In this talk, we will discuss the implication of these results.

  • PDF

Influence of Alkali Metal Cation Type on Ionization Characteristics of Carbohydrates in ESI-MS

  • Choi, Sung-Seen;Kim, Jong-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.1996-2000
    • /
    • 2009
  • Alkali metal salts were introduced to enhance the ionization efficiency of glucose and maltooligoses in electrospray ionization-mass spectrometry (ESI-MS). A mixture of the same moles of glucose, maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose, and maltoheptaose was used. Salts of lithium, sodium, potassium, and cesium were employed as the cationizing agent. The ionization efficiency varied with the alkali metal cation types as well as the analyte sizes. Ion abundance distribution of the [M+$cation]^+$ ions of the carbohydrates varied with the fragmentor voltage. The maximum ion abundance at low fragmentor voltage was observed at maltose, while the maximum ion abundance at high fragmentor voltage shifted to maltotriose or maltotetraose for Na, K, and Cs. Variation of the ionization efficiency was explained with the hydrated cation size and the binding energy of the analyte and alkali metal cation.

Chemical abundance study of two open cluster, IC 2391 and NGC 6475 : The abundance determination

  • Park, Keun-Hong;Lee, Sang-Gak;Kang, Won-Seok;Yoon, Tae-Seog
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.146.2-146.2
    • /
    • 2011
  • In this study, we have derived the abundances of several elements ? Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni - for the six F G K type stars in IC 2391 and the seven stars in NGC 6475. The spectra of those stars are taken from UVES POP archive data, of which resolution is 80,000. To derive the abundances of those elements, TAME (Tools for Automatic Measurement of Equivalent-widths), Kurucz stellar atmospheric model, and MOOG code are used. The stellar parameters (effective temperature, log g, metallicity, microturbulent velocity) are determined from the iron lines. The results provide the abundance differences of chemical elements between two open clusters, IC 2391 (a member of Gould Belt) and NGC 6475 (non-member of it), which would lead to better understanding about Gould Belt.

  • PDF

HCN and HNC abundance ratio toward three different phases of massive star formation

  • Jin, Mi-Hwa;Lee, Jeong-Eun;Kim, Kee-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.50.2-50.2
    • /
    • 2013
  • In the process of star formation, the density and temperature of associated material, which are the physical conditions for the molecular chemistry, vary dramatically. As a result, the connection between physical and chemical conditions has been used to trace the evolutionary stages in star formation. One chemical tracer for the physical conditions in star forming material is the [HCN]/[HNC] abundance ratio since the ratio strongly depends on the kinetic temperature in molecular clouds. Here we investigate the [HCN]/[HNC] abundance ratios in objects related to the massive star formation. For the investigation, we carried out $H^{13}CN$ and $HN^{13}C$ line observation toward objects in three different evolutionary stages of massive star formation: Infrared dark clouds (IRDCs), High-mass protostellar object (HMPOs), and Ultra-compact HII regions (UCHIIs). According to our observational results, both $H^{13}CN$ and $HN^{13}C$ lines have been detected toward 19 IRDCs, 25 HMPOs, and 31 UCHIIs. We will discuss about the [HCN]/[HNC] abundance ratios in different evolutionary stages of massive star formation and associate the results with the physical conditions of the targets.

  • PDF