• Title/Summary/Keyword: chelating adsorbent

Search Result 8, Processing Time 0.019 seconds

Synthesis of 2,2'-Iminodibenzoic Acid-Cellulose Adsorbent and Its Adsorptivity of Cu(II) and Pb(II) (2,2'-Iminodibenzoic acid-cellulose 흡착제의 합성과 Cu(II) 및 Pb(II)의 흡착에 관한 연구)

  • Shim, Sang-Kyun;Min, Byoung-Do
    • Analytical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.291-299
    • /
    • 1997
  • 2,2'-iminodibenzoic acid-cellulose was prepared by reacting 2,2'-iminodibenzoic acid salt with cellulose-Cl obtained by chlorination of cellulose-OH which is the major component of sawdust. The adsorptivity of Pb(II) and Cu(II) was studied using the synthetic chelating adsorbent. The adsorption amounts of those ions increased with increasing pH and the optimum adsorption time of metal ion was about 1hr. The adsorptivity of Pb(II) was larger than that of Cu(II).

  • PDF

Synthesis of Chelating Adsorbent (2,2'-Iminodibenzoic Acid-crosslinked Chitosan) and Adsorptivity of Pb(II), Cu(II), Cd(II) (킬레이트 흡착제(2,2'-Iminodibenzoic acid-가교 chitosan)의 합성과 Pb(II), Cu(II), Cd(II)의 흡착력에 관한 연구)

  • Shim, Sang-Kyun;Ryu, Jae-Jun
    • Analytical Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.452-459
    • /
    • 1998
  • Crosslinked chitin was prepared from epichlorohydrin and chitin which was isolated from waste marin source. The crosslinked chitosan were prepared by the deacetylation of the crosslinked chitin with a strong base. 2,2'-Iminodibenzoic acid-crosslinked chitosan was prepared by reacting 2,2'-Iminodibenzoic acid salt with crosslinked chitosan-Cl which was obtained by chlorination of crosslinked chitosan. The adsorptivity of Pb(II), Cu(II), Cd(II) was studied as a synthetic adsorbent. Experimental results for the adsorption and the recovery characteristics showed that the more pH increase, the more amount of adsorbed metal ion increase. Optimum adsorption time was 1 hr, and adsorption capacity was increased in order of $Cu^{2+}$<$Cd^{2+}$<$Pb^{2+}$, and recovery capacity was increased in order of $Cd^{2+}$<$Cu^{2+}$<$Pb^{2+}$.

  • PDF

An Investigation for the Adsorption of Heavy Metal Ions by Polyamine Organic Adsorbent from the Aqueous Solution - The Influence of Molecular Weight and Degree of Deacetylation of Chitosan - (수용액 중에서 Polyamine계 유기응집제를 이용한 중금속 이온의 흡착 - 키토산의 분자량과 탈아세틸화도 -)

  • Park, Young-Mi;Jeon, Dong-Won
    • Fashion & Textile Research Journal
    • /
    • v.8 no.4
    • /
    • pp.458-464
    • /
    • 2006
  • The adsorption ability of heavy metal ions from the aqueous solution by chitosan, which it is well known natural biopolymer, has been investigated. The fundamental study in this research is focusing on the physicochemical adsorption utilizing the chitosan as a organic chelating adsorbent, adsorb especially heavy metal ions from the waste liquid solution. The adsorption ability of the chitosan between metal ions, having different characteristics with Mw of 188,600, 297,200, and 504,200 g/mol and degree of deacetylation (DD) of 86.92% and 100% were investigated targeting on the $Ni^{2+}$, $Co^{2+}$, $Zn^{2+}$, and $Pb^{2+}$ ions, respectively. The uptake of heavy metal ions with chitosan was performed by atomic absorption flame emission spectrophotometer (AAS) as conducted residual metal ions. It was found that chitosan has an strong adsorption capacity for some metals under certain conditions. Chitosan, which have 100% degree of deacetylation showed high adsorption recovery ratio and have an affinity for all kinds of heavy metals. In contrast, the molecular weight of chitosan was not completely affected on metal ion adsorption.

AN ENGINEERING SCALE STUDY ON RADIATION GRAFTING OF POLYMERIC ADSORBENTS FOR RECOVERY OF HEAVY METAL IONS FROM SEAWATER

  • Prasad, T.L.;Saxena, A.K.;Tewari, P.K.;Sathiyamoorthy, D.
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1101-1108
    • /
    • 2009
  • The ocean contains around eighty elements of the periodic table and uranium is also one among them, with a uniform concentration of 3.3 ppb and a relative abundance factor of 23. With a large coastline, India has a large stake in exploiting the 4 billion tonnes of uranium locked in seawater. The development of radiation grafting techniques, which are useful in incorporating the required functional groups, has led to more efficient adsorbent preparations in various geometrical configurations. Separation based on a polymeric adsorbent is becoming an increasingly popular technique for the extraction of trace heavy metals from seawater. Radiation grafting has provided definite advantages over chemical grafting. Studies related to thermally bonded non woven porous polypropylene fiber sheet substrate characterization and parameters to incorporate specific groups such as acrylonitrile (AN) into polymer back bones have been investigated. The grafted polyacrylonitrile chains were chemically modified to convert acrylonitrile group into an amidoxime group, a chelating group responsible for heavy metal uptake from seawater/brine. The present work has been undertaken to concentrate heavy metal ions from lean solutions from constant potential sources only. A scheme was designed and developed for investigation of the recovery of heavy metal ions such as uranium and vanadium from seawater.

Study on the adsorption of Heavy Metals by Chitin, Chitosan, Cellulose and its Composite Beads (Chintin, Chitosan, Cellulose 및 혼합 Beads의 중금속 이온 흡착특성에 관한 연구)

  • 전수진;유병태
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.2
    • /
    • pp.1-12
    • /
    • 1995
  • Under accelerated industrial developments environment pollution comes out to be very stirious. Especially the ions of heavy metal from wastewater, even if they are minimal, accumulated in ecology circle and do finally injury to human health. The general process for removal of heavy metals include coagulation and following sedimentation, ion -exchange and active carbon adsorption and sedimentation that applicate in popular, needs the expense of coagulant the additional treatment of sludge on the general process of coagulation and sedimentation. It is also a serious problem that the second pollution caused by coagulant. However chelating adsorption that uses natural chelating high- molecular compound has not pollution problem Among chelating high- molecules, the diminishing chitin that contained in crustaceans as crawfish and crab in our country with affluent water resources are easy to get. So it is advantageous to use this ubiquitous material for removing heavy metals because we could reuse natural resource. In this research, the author tested the effectiveness of the adsorption and removal of heavy metal ions by chitin and its derivatives. Chitin and cellulose became beads and used as flocculant, in this test. The results are as follows . First, bead showed higher removal ratio than powder in the comparative test on adsorbents such as chitin, chitosan and cellulose. Secondly, in the variety test by the kinds of adsorbent and time. chitosan bead and cellulose bead that showed the highest removal ratio. One hour need to remove the ions of heavy metal. Thirdly, the results of the adsorption degree test by pH revealed high removal ratio adsorption of chitin, cellulose and chitosan bead in alkalin condition but chitosan bead in acidic condition.

  • PDF

Determination of Cd(II) after Preconcentration onto Microcrystalline p-Dichlorobenzene Loaded with 2-Mercaptobenzothiazole (2-Mercaptobenzothiazole이 내포된 p-Dichlorobenzene 미세결정으로 예비농축시킨 후 Cd(II) 정량)

  • Yoon, Ju-Im;Choi, Hee-Seon
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.1
    • /
    • pp.27-33
    • /
    • 2009
  • A sensitive technique for the determination of trace Cd(II) in various real samples after preconcentration onto microcrystalline p-dichlorobenzene loaded with 2-mercaptobenzothiazole was developed. Several experimental conditions such as the pH of the sample solution, the amount of chelating agent 2-mercaptobenzothiazole, the amount of adsorbent p-dichlorobenzene-2-MBT, and the flow rate of sample solution were optimized. The interfering effects of various concomitant ions were investigated. Cu(II) interfered with more seriously than any other ions. However, the interference by Cu(II) could be overcome sufficiently by adjusting tartrate ion concentration to be 0.01M or by controlling the amount of 2-mercaptobenzothiazole contained in 0.20 g p-dichlorobenzene to be 0.12 g. The dynamic range, the correlation coefficient ($R^2$) and the detection limit obtained by this proposed technique were $0.5{\sim}30$ ng $mL^{-1}$, 0.9962, and 0.39 ng $mL^{-1}$, respectively. Thus, good results were obtained by the use of p-dichlorobenze as adsorbent matrix. For validating this proposed technique, the aqueous samples(wastewater, stream water, and reservoir water) and the plastic sample were used. Recovery yields of $93{\sim}104$ % were obtained. By F test, these measured data were not different from ICP-MS data at 95 % confidence level. Based on the results from the experiment, it was found that this proposed technique could be applied to the preconcentration and determination of Cd(II) in various real samples.

Determination and preconcentration of Cu(II) using microcrystalline p-Dichlorobenzene loaded with salicylaldoxime (Salicylaldoxime이 내포된 p-Dichlorobenzene 미세결정을 이용한 Cu(II)의 예비농축 및 정량)

  • Lee, Ha-Na;Choi, Hee-Seon
    • Analytical Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.240-246
    • /
    • 2010
  • A technique for the determination of trace Cu(II) in various real samples by FAAS after the column preconcentration onto p-dichlorobenzene-SA adsorbent, which is microcrystalline p-dichlorobenzene loaded with salicylaldoxime (SA) has been developed. Several experimental conditions such as pH of the sample solution, the amount of chelating agent salicylaldoxime, the amount of adsorbent p-dichlorobenzene-SA, and flow rate of sample solution were optimized. The interfering effects of various concomitant ions were investigated. $CN^-$ interfered more seriously than any other ions. However, the interference by $1\;{\mu}g\;mL^{-1}\;CN^-$ could be overcome completely by controlling the concentration of Ni(II) to $20\;{\mu}g\;mL^{-1}$. The linear range, correlation coefficient ($R^2$) and detection limit obtained by this technique were $3.0\sim100\;ng\;mL^{-1}$, 0.9901, and $3.1\;ng\;mL^{-1}$, respectively. For validating this technique, the aqueous samples (wastewater, reservoir water and stream water) and the food samples (orange juice, fresh egg and skim milk) were used. Recovery yields of 93~104% were obtained. These measured mean values were not differents from ICP-MS data at 95% confidence level. The good results were obtained from the experiments using the rice flour certified reference material (CRM) sample. Based on the experimental results, it was found that this technique could be applied to the preconcentration and determination of Cu(II) for various real samples.

Novel Solid Phase Extraction Procedure for Some Trace Elements in Various Samples Prior to Their Determinations by FAAS

  • Sacmaci, Srife;Kartal, Senol;Sacmaci, Mustafa;Soykan, Cengiz
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.444-450
    • /
    • 2011
  • A novel method that utilizes poly(5-methyl-2-thiozyl methacrylamide-co-2-acrylamido-2-methyl-1-propanesulfonic acid-co-divinylbenzene) [MTMAAm/AMPS/DVB] as a solid-phase extractant was developed for simultaneous preconcentration of trace Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Mn(II), Ni(II), Pb(II), and Zn(II) prior to the measurement by flame atomic absorpiton spectrometry (FAAS). Experimental conditions for effective adsorption of the metal ions were optimized using column procedures. The optimum pH value for the simultaneously separation of the metal ions on the new adsorbent was 2.5. Effects of concentration and volume of elution solution, sample flow rate, sample volume and interfering ions on the recovery of the analytes were investigated. A high preconcentration factor, 100, and low relative standard deviation values, $\leq$1.5% (n = 10), were obtained. The detection limits (${\mu}gL^{-1}$) based on the 3s criterion were 0.18 for Cd(II), 0.11 for Co(II), 0.07 for Cr(III), 0.12 for Cu(II), 0.18 for Fe(III), 0.67 for Mn(II), 0.13 for Ni(II), 0.06 for Pb(II), and 0.09 for Zn(II). The validation of the procedure was performed by the analysis of two certified reference materials. The presented method was applied to the determination of the analytes in various environmental samples with satisfactory results.