• Title/Summary/Keyword: chelated copper

Search Result 15, Processing Time 0.021 seconds

Removal Characteristics of Copper from Anthraquinone Dyes by Iron Cementation (안트라퀴논계 염료에서 철 교착반응에 의한 구리의 제거 특성)

  • 천재기;이석희;주창식
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.20 no.1
    • /
    • pp.45-53
    • /
    • 2002
  • The removal of chelated copper from anthraquinone dyes by cementation on powdered iron was studied. The removal of chelated copper was found to be a function of solution pH, amount of NTA and iron, and reaction temperature. In the presence of NTA, reaction rate of cementation was found to be strongly dependent on reaction temperature, solution pH, amount of NTA and amount of iron powder. These experimental results can be explained successfully by the distribution of complexed copper iron in solutions.

  • PDF

Weaning pig performance can be enhanced by replacing dietary inorganic copper and zinc with glycine or methionine-chelated copper and zinc

  • Sarbani Biswas;De Xin Dang;In Ho Kim
    • Korean Journal of Agricultural Science
    • /
    • v.51 no.1
    • /
    • pp.53-61
    • /
    • 2024
  • A total of 180 21-day-old weaning pigs ([Yorkshire × Landrace] × Duroc) with an initial body weight of 6.44 ± 0.01 kg were randomly assigned to 9 treatments for evaluating the effects of replacing dietary inorganic copper (Cu) and zinc (Zn) with glycine (Gly) or methionine (Met)-chelated Cu and Zn on growth performance and nutrient digestibility. The experimental period was 35 days. There were four replicated pens per treatment, with five pigs (three males and two females) per pen. Dietary treatments consisted of a basal diet (CON), in which the sources of Cu and Zn were in inorganic form. The inorganic Cu and Zn in the basal diet were replaced by glycine-chelated (GC) and methionine-chelated (MC) Cu and Zn by 30, 50, 70, or 100% to form the GC1, GC2, GC3, GC4, or MC1, MC2, MC3, MC4 groups. The 100% replacement of dietary inorganic Cu and Zn with GC or MC increased (p < 0.05) average daily gain, average daily feed intake, and gain-to-feed ratio. The complete replacement of dietary inorganic Cu and Zn with GC or MC led to enhanced (p < 0.05) digestibility of dry matter, nitrogen, Cu and Zn. Thus, the replacement of inorganic Cu and Zn with GC or MC can improve the growth efficiency and nutrient utilization of weaning pigs.

Effects of Chelated Copper and Zinc Supplementation on Growth Performance, Nutrient Digestibility, Blood Profiles, and Fecal Noxious Gas Emission in Weanling Pigs

  • Zhang, Zheng Fan;Cho, Jin Ho;Kim, In Ho
    • Journal of Animal Science and Technology
    • /
    • v.55 no.4
    • /
    • pp.295-301
    • /
    • 2013
  • This study was conducted to evaluate the effects of chelated Cu and Zn on growth performance, nutrient digestibility, blood profiles, and fecal noxious gas emission in weanling pigs. A total of 90 weanling pigs with an initial body weight (BW) of $5.27{\pm}0.04kg$ were randomly allotted to two dietary treatments for 42 d. Pigs were then fed a control diet (CON) or a Zinpro diet (CON + 0.1% chelate copper and zinc). There were nine replicate-pens with five pigs in each pen. During d 0 to 14 and d 14 to 28, the ADFI decreased (p<0.05) and the G/F increased (p<0.05) in pigs fed the Zinpro diet compared with those that received the CON diet. During d 28 to 42, the ADFI increased (p<0.05) in pigs fed the Zinpro diet relative to those fed the CON diet. Additionally, the apparent total tract digestibility of DM, N, and energy increased (p<0.05) in the Zinpro group when compared to the CON group on d 14 and 28. The lymphocyte percentage was also greater (p<0.05) in the Zinpro group than in the CON group. Overall, dietary supplementation with 0.1% chelate copper and zinc improved the growth performance and nutrient digestibility in weanling pigs.

Effects of Stabilizing Additives on Electroless Copper Deposition (무전해 동 도금용액 속에서 안정제의 역할)

  • 최순돈;박범동
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.4
    • /
    • pp.173-180
    • /
    • 1992
  • The effects of the stabilizing additives such as NaCN, 2-MBT and Thiourea on bath decom-position, plating rate and surface morphology have been studied. Bath stability was increased in the order of an additive-free bath, and NaCN-, 2-MBT-, and Thiourea-stabilized baths. The sta-bilizing effects may be attributed to the stability of Cu(II) -complexes. The plating rate is the re-verse order of the bath stability. Accelerative effect of 2-MBT in proper quantity(0.3mg/$\ell$) may be explained by visualizing it absorbed through benzene ring or sulfur atom on portions of the sub-strates. The strong bond of the complexing part of the molecule to nearby chelated copper ions would tend to accelerate plating by making it easier for the Cu2+ -ligand bond to be broken. Sur-face morphologies of copper deposits depend on the bath additives. Electroless copper deposits from the 2-MBT stabilized baths are finer than the deposits from the NaCN- and Thiourea- stabi-lized baths due to the strong adsorption on the substrates.

  • PDF

Effects of Feeding Different Chelated Copper and Zinc Sources on Growth Performance and Fecal Excretions of Weanling Pigs

  • Lee, S.H.;Choi, S.C.;Chae, B.J.;Acda, S.P.;Han, Y.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.11
    • /
    • pp.1616-1620
    • /
    • 2001
  • Two feeding trials were conducted to study the effects of different chelated copper and zinc compounds on the performance and fecal excretions of weanling pigs. In Exp. 1, 150 weanling pigs ($L{\times}Y{\times}D$, $12.30{\pm}2.07kg$) were randomly assigned to five dietary treatments: 170 ppm Cu from $CuSO_4$, 85 ppm Cu from Cu amino-chelate (CAC), 170 ppm Cu from CAC, 85 ppm Cu from Cu-Lysine (CL), and 170 ppm Cu from CL. In Exp. 2, 150 weanling pigs ($L{\times}Y{\times}D$, $12.52{\pm}1.80kg$) were randomly assigned to five dietary treatments: 120 ppm Zn from $ZnSO_4$, 60 ppm Zn from Zn-amino-chelate (ZAC), 120 ppm Zn from ZAC, 60 ppm Zn from Zn-Methionine (ZM), and 120 ppm Zn from ZM. In both experiments, pigs were randomly distributed to the treatments following a randomized complete block design on the basis of body weight as the blocking variable. Each experiment was conducted for 28 days. Blood and fecal samples were collected to determine mineral contents as affected by the dietary treatments. There was no difference (p>0.05) in ADG and ADFI among treatments, but F/G was improved (p<0.05) in pigs fed diet with 170 ppm CAC than 85 ppm CL but not different (p>0.05) to the control (170 ppm $CuSO_4$). Regardless of copper source, concentration of Cu in serum and feces were higher in pigs fed diet with 170 ppm Cu than pigs fed diet with 85 ppm Cu (Exp 1). In Exp 2 the ADG was higher (p<0.05) in pigs fed diet with 120 ppm ZM than in pigs fed diets with 120 ppm $ZnSO_4$ and 60 ppm ZAC and ZM. The serum zinc concentration was generally higher (p<0.05) in pigs fed diet with organic source than the control group ($ZnSO_4$). Also, there was a trend towards a decrease in fecal excretions of zinc when dietary zinc level was low. The efficacy of the two chelated copper and zinc sources is similar in terms of growth performance. The fecal excretions for Cu and Zn could be reduced in pigs fed low level of these minerals using organic sources.

Determination and Preconcentration of Copper(Ⅱ) after Adsorption of Its Cupferron Complex onto Benzophenone

  • Lee, Taik-Jin;Choi, Hee-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.861-865
    • /
    • 2002
  • A sensitive method for the determination of trace copper(II) after the preconcentration by adsorbing its cupferron complex onto microcrystalline benzophenone was developed.Several experimental conditions such as the pH of sample solution,concentration of cupferron, amount of benzophenone and atirring time were optimized. Trace compper(II) in 100mL solution was chelated with $3.0\;{\times}\;10^3$ M cupferron at pH 5.0. After 0.20g benzophenone, The benzophenone adsorbing Cu-cupferron complex was filtered and then Cu-cupferron complex was desorbed in 10 mL ethanol. Copper was determined by a flame atomic absorption spectrophotomethry. The interfering effects of diverse concomitant ions were investigated. Fe(III) interfered seriously with, but the interference by Fe(III) was completely eliminated by adjusting the concentration of copferron to $5.0\;{\times}\;10^3$ M. The detection limit of this method was 8.6${\times}$10 M(5.5 ngmL$^1$). Recoveries of 97% and 96% were obtained for Cu(II) in a stream water and a brass sample, respectively. Based on the results from the experiment. this proposed technique could be applied to the determination of copper(II) in real samples.

Copper Content Increase in E. coli Expressing Copper-Binding Peptide Genes (구리 결합 펩타이드의 발현에 의한 대장균 균체의 구리 함량 증가)

  • Kim, Hyung-Kee;Moon, Sung-Hyun;Kim, Woo-Yeon
    • Applied Biological Chemistry
    • /
    • v.46 no.1
    • /
    • pp.7-11
    • /
    • 2003
  • Cloning and expression of copper-binding peptide gene in E. coli was carried out to enhance the copper-chelation capacity. E. coli was transformed with pET vector containing the copper-binding region of potato polyphenol oxidase gene and polyhistidine-coding DNA, and the copper content of E. coli harboring each vector was measured. No increase in intracellular copper was observed in E. coli harboring PPOCBpET32 vector, which contains DNA for polyphenol oxidase copper-binding region. Intracellular copper content of E. coli harboring pE728a vector, which contains one hexahistidine unit DNA, was 2,500 ppm after culturing without kanamycin, whereas E. coli harboring pET-his vector, which contains nine hexahistidine unit DNAs was 3,200 ppm.

Studies on the Properties of 2-Methoxy-5-Nitrophenol Complex Salts (2-Methoxy-5-Nitrophenol 금속착염의 화학적 성질에 관한 연구)

  • 김선덕;우세홍;김명운
    • Journal of Environmental Health Sciences
    • /
    • v.1 no.1
    • /
    • pp.21-27
    • /
    • 1974
  • This work was carried out to investigate the chemical properties of the chelate compounds which were produced with 2-methoxy-5-nitrophenol(MNG) and metal salt such as copper nitrate and manganese nitrate. And obtained results were as in the followings. 1) The binding ratio of the chelate compounds formation were determined by using the molar ratio concentration method and their chemical structures were identified by IR-spectrum. 2) In the absorbance measuring, 2-methoxy-5-nitrophenol coordinated with manganese and copper showed the maximum absorbance at $430 m\mu$ and $410 m\mu$ respectively. 3) The binding ratio of chelated compounds were measured by molar ratio method and continuous variation method with spectrophotometer, which was identified as 1:2. 4) The conditional formation constant(log Kn value) of manganese and copper chelate compounds were 6.70, 6.75, respectively according to the equation of $log\frac{A-AM\circ n MNG}{AMm MNG-A}=n log (M\circ)+log Kn$ 5) The dissociations degree of manganese and copper chelate compound were $2, 300{\times} 10^{-7}$, $2, 346{\times} 10^{-7}$ respectively according to the molar calculation method.

  • PDF

Trace Mineral Nutrition in Poultry and Swine

  • Richards, James D.;Zhao, Junmei;Harrell, Robert J.;Atwell, Cindy A.;Dibner, Julia J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.11
    • /
    • pp.1527-1534
    • /
    • 2010
  • Trace minerals such as zinc, copper, and manganese are essential cofactors for hundreds of cellular enzymes and transcription factors in all animal species, and thus participate in a wide variety of biochemical processes. Immune development and response, tissue and bone development and integrity, protection against oxidative stress, and cellular growth and division are just a few examples. Deficiencies in trace minerals can lead to deficits in any of these processes, as well as reductions in growth performance. As such, most animal diets are supplemented with inorganic and/or organic forms of trace minerals. Inorganic trace minerals (ITM) such as sulfates and oxides form the bulk of trace mineral supplementation, but these forms of minerals are well known to be prone to dietary antagonisms. Feeding high-quality chelated trace minerals or other classes of organic trace minerals (OTM) can provide the animal with more bioavailable forms of the minerals. Interestingly, many, if not most, published experiments show little or no difference in the bioavailability of OTMs versus ITMs. In some cases, it appears that there truly is no difference. However, real differences in bioavailability can be masked if source comparisons are not made on the linear portion of the dose-response curve. When highly bioavailable chelated minerals are fed, they will better supply the biochemical systems of the cells of the animal, leading to a wide variety of benefits in both poultry and swine. Indeed, the use of certain chelated trace minerals has been shown to enhance mineral uptake, and improve the immune response, oxidative stress management, and tissue and bone development and strength. Furthermore, the higher bioavailability of these trace minerals allows the producer to achieve similar or improved performance, at reduced levels of trace mineral inclusion.

Effects of Cu and Zn-Methionine Chelates Supplementation on the Performance of Broiler Chickens (사료 內 Cu 및 Zn-Methionine Chelates 첨가가 육계의 생산성에 미치는 영향)

  • Hong, S.J.;Lim, H.S.;Paik, I.K.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.399-406
    • /
    • 2002
  • An experiment was conducted to investigate the effects of supplemental copper or/and zinc methionine chelates(Cu-Met or/and Zn-Met) on the performance, nutrient digestibility, serum IgG level, gizzard erosion, and the contents of Cu and Zn in liver and excreta of broiler chickens. One thousand d-old broiler chickens (Ross$^{(R)}$) were assigned to 4 treatments: control, 100 ppm Cu in methionine chelate(Cu-Met), 100 ppm Zn in methionine chelate(Zn-Met) and 100 ppm Cu plus 100 ppm Zn in methionine chelate(Cu-Zn-Met). Each treatment had five replications of 50 (25 male + 25 female) birds each. Average weight gains of chicks fed chelated Cu or/and Zn were significantly higher than that of chicks fed the control (P<0.05). Moreover, feed conversion rates of chicks were better in the chicks fed chelated Cu or/and Zn than in the chicks fed the control (P<0.05). The birds fed the chelated Cu and Zn(Cu-Zn-Met) tended to perform the best growth rate and feed conversion rate. Nutrient digestibilities were not affected by the dietary treatments. Serum IgG level of chicks fed Cu-Zn-Met was significantly higher than that of chicks fed the control (P<0.05). Gizzard erosion index was not significantly different among the treatments. The contents of Cu and Zn in liver were not significantly affected by the dietary treatments. The excreta contents of Cu or/and Zn were significantly high in the birds fed supplementary Cu or/and Zn. It was concluded that dietary supplementation of Cu or/and Zn in methionine chelated form improved growth and feed conversion efficiency of broilers.