Browse > Article

Copper Content Increase in E. coli Expressing Copper-Binding Peptide Genes  

Kim, Hyung-Kee (Department of Biotechnology, Chung-Ang University)
Moon, Sung-Hyun (Department of Biotechnology, Chung-Ang University)
Kim, Woo-Yeon (Department of Biotechnology, Chung-Ang University)
Publication Information
Applied Biological Chemistry / v.46, no.1, 2003 , pp. 7-11 More about this Journal
Abstract
Cloning and expression of copper-binding peptide gene in E. coli was carried out to enhance the copper-chelation capacity. E. coli was transformed with pET vector containing the copper-binding region of potato polyphenol oxidase gene and polyhistidine-coding DNA, and the copper content of E. coli harboring each vector was measured. No increase in intracellular copper was observed in E. coli harboring PPOCBpET32 vector, which contains DNA for polyphenol oxidase copper-binding region. Intracellular copper content of E. coli harboring pE728a vector, which contains one hexahistidine unit DNA, was 2,500 ppm after culturing without kanamycin, whereas E. coli harboring pET-his vector, which contains nine hexahistidine unit DNAs was 3,200 ppm.
Keywords
chelated copper; polyhistidine expression in E. coli; copper accumulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sousa, C., Cebolla, A. and de Lorenzo, V. (1996) Enhanced metalloadsorpdon of bacterial cells displaying poly-His peptides. Nature Biotechmt. 14, 1017-1020   DOI   ScienceOn
2 Schagger, H. and Jagow G. V. (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to lOOkDa. Anat. Biochem. 166,368-379   DOI   ScienceOn
3 Butt, V. S. (1980) In The Biochemistry of Ptant, Vol. 2 (Davies, D. D. ed) Academic Press, San Diego, CA, USA, pp. 81-123
4 Schmidbauer, S.B. and Strobel, O. K. (1997) Rapid purification of histidine-tagged glutathione S-transferase fusion protein by metal chelate perfusion chromatography media. Front. Biosci. 2, 6-8   DOI
5 Hunt, M. D, Eannetta, N. T, Yu, H., Newman, S. M. and Steffens, J. C. (1993) cDNA cloning and expression of potato polyphenol oxidase. Plant Mol. Biot. 21, 59-68   DOI   ScienceOn
6 Lindner, P. (1992) Purification of native proteins from the cytoplasm and periplasm of Escherichia coti using IMAC and histidine tails: A comparison of proteins and protocols. A Companion to Meth. EnzynwI. 4, 41-56
7 Pack, D. W. and Amold, F. H. (1997) Langmuir monolayer characterization of metal chelating lipids for protein targeting to membranes. Chem. Phys. Lipids 86, 135-152   DOI   ScienceOn
8 Glusker, J. R, Katz, A. K. and Bock, C. W. (1999) Metal ions in biological systems. The Rigaku J. 16, 8-16
9 Lin, C.-M. and Kosman, D. J. (1990) Copper uptake in wildtype and copper meta11othionein-de6cient Saccharomyces cerevisiae: Kinetics and mechanism. J. BioL Chem. 265, 9194- 9200
10 Hwang I. G. and Kim, W.-Y. (1996) Overexpression of a copper binding site of the polyphenol oxidase in E. coti. J.Gen. Ene. Res. 9, 1-8
11 Pack, D. W., Chen, G., Maloney, K. M., Chen, C.-T. and Amold, F. H. (1997) A metal-chelating lipid for 2D protein crystallization via coordination of surface histidines. J. Am. Chem. Soc. 119, 2479-2487   DOI   ScienceOn
12 Waldrop, G. L. and Ettinger, M. J. (1990) Effects of albumin and hishdine on kinetics of copper transport by fibroblasts. Am. J. Physiot. 259, 212-218
13 Maloney, K. M., Shnek, D. R., Sasaki, D. Y. and Amold, F. H. (1996) Fluorescence signaling of ligand binding and assembly in metal-chelating lipid membranes. Chem. Biot. 3, 185-192   DOI   ScienceOn
14 De Rome, L. and Gadd, G. M. (1987) Measurement of copper uptake in Saccharomyces cerevisiae using a CuU-selective electrode. FEMS Microbiot. Lett. 43, 283-287   DOI