• Title/Summary/Keyword: chassis

Search Result 472, Processing Time 0.028 seconds

Light-weight Design of a Korean Light Tactical Vehicle Using Optimization Technique (최적화 기법을 이용한 한국형 소형전술차량의 경량설계)

  • Suh, Kwonhee;Song, Bugeun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.3
    • /
    • pp.336-343
    • /
    • 2015
  • One of various main jobs in the design of a new tactical vehicle is to develop the lightest chassis parts satisfying the required durability target. In this study, the analytic methods to reduce the size and weight of a lower control arm and chassis frame of a Korean light tactical vehicle are presented. Topology optimization by ATOM (Abaqus Topology Optimization Module) is applied to find the optimal design of the suspension arm with volume and displacement constraints satisfied. In case of chassis frame, the light-weight optimization process associated with design sensitivity method is developed using Isight and ABAQUS. By these analytic methods we can provide design engineers with guides to where and how much the design changes should be made.

Development of position correction system of door mounting robot based on point measure: Part ll-Measurement and implementation (특정점 측정에 근거한 도어 장착 로봇의 위치 보정 시스템 개발: Part II - 측정및 구현)

  • Byun, Sung Dong;Kang, Hee Jun;Kim, Sang Myung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.3
    • /
    • pp.42-48
    • /
    • 1996
  • In this paper, a position correction system of industrial robot for door-chassis assembly tast is developed in connection with the position correction algorithm shown in Part I. Tow notches and a hole of auto chassis are selected as the reference measure points and a vision based error detection algorithm is devised to measure in accuracy of less than 0.07mm. And also, the transformation between base and tool coordinates of the robot is shown to send the suitable correction quantities caaording to robot's option. The obtained algorithms were satisfactorily implemented for a real door-chassis model such that the system could accomplish visually acceptable door-chassis assembly task.

  • PDF

Dimension Enhancement Design of Bracket for Strength Improvement of the Bus Bare Chassis in which Shape is Fixed

  • Kwon, Young Woong
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.443-450
    • /
    • 2023
  • One of the basic tasks in the automobile manufacturing process is to design a bare chassis, which is the basic frame of a vehicle, and a bracket is a member connecting various devices to the frame. Bracket, which is a member connecting the engine, transmission, and suspension, which are the core devices of driving and operating the vehicle, to the frame, must maintain safety during vehicle operation. If the bracket connecting the various devices constituting the vehicle to the frame does not have durability, serious accidents may occur during operation of the vehicle. In this study, we performed stress analysis on the brackets installed in the bare chassis of the 25-passenger bus in the development stage. Based on the stress analysis performed, an improved bracket dimension was proposed.

Worst Case Scenario Generation on Vehicle Dynamic Stability and Its Application (주행 안정성을 고려한 최악 상황 시나리오 도출 및 적용)

  • Jung, Dae-Yi;Jung, Do-Hyun;Moon, Ki-Hyun;Jeong, Chang-Hyun;Noh, Ki-Han;Choi, Hyung-Jeen
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.1-9
    • /
    • 2008
  • The current test methods are insufficient to evaluate and ensure the safety and reliability of vehicle system for all possible dynamic situation including the worst case such as rollover, spin-out and so on. Although the known NHTSA J-turn and Fish-hook steering maneuvers are applied for the vehicle performance assessment, they aren't enough to estimate other possible worst case scenarios. Therefore, it is crucial for us to verify the various worst cases including the existing severe steering maneuvers. This paper includes the procedure to search for other useful worst case based upon the existing worst case scenarios mentioned above and its application in simulation basis. The only human steering angle is selected as a design parameter here and optimized to maximize the index function to be expressed in terms of either roll angle or yaw rate. The obtained scenarios were enough to generate the worst case to meet NHTSA worst case definition (ex.2-inch wheel lift). Additionally, as an application, the worst case steering maneuver is acquired for the vehicle to operate with a simple ESP system. It has been concluded that the new procedure in this paper is adequate to create other feasible worst case scenarios for a vehicle system both with an intelligent safety control system and without it.

Development of Durability Enhancement Technology for Arc Weldings in Advanced High Strength Steel (AHSS) Chassis Parts (고장력강판 적용 샤시부품의 용접부 내구수명 향상기술 개발)

  • Lee, Kwang Bok;Oh, Seung Taik
    • Journal of Welding and Joining
    • /
    • v.33 no.4
    • /
    • pp.50-56
    • /
    • 2015
  • In general, discontinuity of metallurgical and structural points of weld zone could decline the fatigue strength. For the lightweight trend, the AHSS application in automotive chassis is in-progress. However, there are few research reports on AHSS welds fatigue strength in especially automotive chassis parts. Therefore, in this study, we evaluated the effects of the factors affecting the AHSS welding fatigue strength. As the result, the stress concentration of weld bead is the most important factor for welding fatigue strength. For the enhancement of welding fatigue strength, we focused on reducing the stress concentration of the welding beads. So, we applied and proved the plasma welding process and GTAW (Gas Tungsten Arc Welding) dressing method. It was verified by uniaxial fatigue specimen, fatigue performance increased from 40 to 60% by applying TIG dressing method compared to the conventional GMAW (Gas Metal Arc Welding). These results could be recommended the enhancement of fatigue performance of AHSS.

Development of FCHEV Virtual Platform using Motor Model Based on Mathematical Formulation (수학적 모터 모델 기반 연료전지 자동차 가상 플랫폼 개발)

  • Kim, Sung-Soo;Park, Sangcheol;Choi, Jangyoung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.31-39
    • /
    • 2013
  • A virtual chassis platform for Fuel Cell Hybrid Electric Vehicles(FCHEV) has been developed, and a virtual platform similar to the actual system has been composed. In addition, major components such as a motor, fuel cell and battery for the virtual platform have been constructed by using a mathematical formulation. The FCHEV virtual platform using a detailed model based on the mathematical formula is capable of simulating various conditions according to changes of the control logic and component modules to evaluate performance, considering the vehicle dynamic characteristics. Usability of the mathematical model has been verified by comparative simulations according to the motor current control variation. In addition, reliability of the developed virtual chassis platform has been verified by simulating its fuel consumption with the UDDS(Urban Dynamometer Driving Schedule) FTP-72 velocity profile.