• Title/Summary/Keyword: charpy impact properties

Search Result 138, Processing Time 0.027 seconds

Microstructure and Mechanical Properties of High-Strength Low-Carbon Bainitic Steels with Enhanced Deformability (높은 변형능을 갖는 저탄소 베이나이트계 고강도강의 미세조직과 기계적 특성)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.23 no.8
    • /
    • pp.423-429
    • /
    • 2013
  • Recently, steel structures have increasingly been required to have sufficient deformability because they are subjected to progressive or abrupt displacement arising from structure loading itself, earthquake, and ground movement in their service environment. In this study, high-strength low-carbon bainitic steel specimens with enhanced deformability were fabricated by varying thermo-mechanical control process conditions consisting of controlled rolling and accelerated cooling, and then tensile and Charpy V-notch impact tests were conducted to investigate the correlation between microstructure and mechanical properties such as strength, deformability, and low-temperature toughness. Low-temperature transformation phases, i.e. granular bainite (GB), degenerate upper bainite(DUB), lower bainite(LB) and lath martensite(LM), together with fine polygonal ferrite(PF) were well developed, and the microstructural evolution was more critically affected by start and finish cooling temperatures than by finish rolling temperature. The steel specimens start-cooled at higher temperature had the best combination of strength and deformability because of the appropriate mixture of fine PF and low-temperature transformation phases such as GB, DUB, and LB/LM. On the other hand, the steel specimens start-cooled at lower temperature and finish-cooled at higher temperature exhibited a good low-temperature toughness because the interphase boundaries between the low-temperature transformation phases and/or PF act as beneficial barriers to cleavage crack propagation.

Comparison of Mechanical Properties and Microstructural Charateristies of Tandem GMAW Weld Metal in 490MPa Grade Steel (490MPa급 고장력강 탄뎀 가스메탈아크 용접부에 대한 기계적 성질과 미세조직 비교)

  • Yi, Hui-Jun;Kang, Sung-Soo;Yu, Gum-Bin;Bae, Won-Hak;Moon, Hyun-Soo
    • Journal of Welding and Joining
    • /
    • v.27 no.2
    • /
    • pp.76-81
    • /
    • 2009
  • Tandem GMAW is one of the high performance welding process and used in many industries to increase the productivity. An evaluation is presented of the mechanical properties and microstructural characteristics of the Tandem GMAW and conventional Single GMAW welds in 30mm thickness 490MPa grade steel by comparison method. Welding sequence and bead with and hight was kept, avoiding the effect of the bead shape and welding sequence. Tension, bending, hardness and Charpy impact test results of Tandem GMAW met the requirement of specification and showed similar distribution with conventional Single GMAW. Volume fraction of ferrite phase in weld metal showed little difference between Tandem GMAW and Single GMAW

Characterization of Hardenability and Mechanical Properties of B-Bearing Microalloyed Steels for Cold Forging (붕소함유 냉간단조용 비조질강의 경화능 및 기계적 특성평가)

  • Park H. G.;Nam N. G.;Choi H. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.395-399
    • /
    • 2004
  • Four microalloyed steels containing B were investigated in terms of hardenability, mechanical properties and microstructure depending upon the cooling rates in order to develop the steel grade for the cold forged fasners. The alloy with the largest DI value among 4 alloys, which contains $0.12\%\;C,\;1.54\%\;Mn,\;0.65\%\;Cr,\;0.11\%V,\;0.040\%Ti\;and\;0.0033\%B$, showed the larest shift to the right hand side in the TTT diagram, implying the wide allowable cooling rate range subsequent to hot rolling in long bar processing, Mechanical tests indicated that yield strength are dependent upon the DI value in water quenched specimens but other properties showed almost the same values. In the same grade of steel, the increase in cooling rates causes the decrease in elongation but the increase in strength, reduction of area and Charpy impact values. Microstructural examination in steel grade with the larest DI values revealed martensitic structure In the water quenched state, a mixture of martensite and bainite in the oil quenched, and ferrite + pearlite in the air cooled and the forced air cooled but the latter showed finer microstructure.

  • PDF

Effects of electroslag remelting process and Y on the inclusions and mechanical properties of the CLAM steel

  • Qiu, Guoxing;Zhan, Dongping;Li, Changsheng;Yang, Yongkun;Jiang, Zhouhua;Zhang, Huishu
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.811-818
    • /
    • 2020
  • Y-containing CLAM steels were melted via vacuum induction melting and electroslag remelting. In this study, the evolution, microstructure, and mechanical properties of the alloy inclusions (ESR-1 (0 wt.% Y), ESR-2 (0.016 wt.% Y) and ESR-3 (0.042 wt.% Y)) were investigated. Further, the number of inclusions in ESRed steel was observed to obviously decrease, and the distributions were more uniform. The fine Y-Al-O inclusions (1-2 ㎛) were the main inclusions in ESR-2. The addition of Y affected the prior austenite grain size (PAGZ), increasing the tensile strength at test temperature. Low ductile-brittle transition temperature (DBTT) was obtained because of the fine PAGZ and dispersive inclusions. For the ESRed CLAM steel with 0.016 wt.% Y, the yield strengths were 621 MPa at 20 ℃ and 354 MPa at 600 ℃ in air. Further, the uniform elongation and elongation of the ESR-2 alloy were 5.5% and 20.1% at 20 ℃, respectively. Meanwhile, the DBTT tested using full-size Charpy impact specimen (55 cm × 10 cm × 10 cm) was reduced to -83 ℃.

Study of Material Properties of High Strength Microalloyed Steel for Cold Forming by Controlled Rolling and Cooling Technology (제어압연.제어냉각기술로 제조된 냉간성형용 비조질강의 소재특성)

  • Kim, N.G.;Park, S.D.;Kim, B.O.;An, J.Y.;Choi, H.J.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.603-608
    • /
    • 2006
  • The main purpose of the present study has been placed on investigating the mechanical properties and microstructures of C-Si-Mn-V steels for cold forming manufactured by controlled rolling and cooling technology. The steels were manufactured in electric arc furnace (EAF) and casted to $160{\times}160mm$ billet. The billets were reheated in walking beam furnace and rolled to coil, the stocks were rolled by Controlled Rolling and Cooling Technology (CRCT), so rolled at low temperature by water spraying applied in rolling stage and acceleratly cooled before coiling. Rolled coils were cold drawed to the degree of 16%, 27% of area reduction respectively without heat treatment. Microstructual observation, tensile test, compression test and charpy impact tests were conducted. The mechanical properties of the steels were changed by area reduction of cold drawing and it is founded that there are optimum level of cold drawing to minimize compression stress for these steels. From the result of this study, it is conformed that $80kg_{f}/mm^{2},\;90kg_{f}/mm^{2}$ grade high strength microalloyed steel for cold forming are developed by accelerated cooling and optimum cold drawing.

Development of High Strength Microalloyed Steel for Cold Forming by Controlled Rolling and Cooling Technology (제어압연${\cdot}$제어냉각기술을 이용한 고강도 냉간성형용 비조질강의 개발)

  • Kim N. G.;Park S. D.;Kim B. O.;Choi H. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.321-324
    • /
    • 2005
  • The main purpose of the present study has been placed on investigating the effects of controlled rolling and cooling on the microstructures and mechanical properties of C-Si-Mn-V steels for cold forming. The steels were manufactured in vacuum induction melting(VIM) furnace and casted to 1.1ton Ingots and the ingots were forged to $\Box150$ billet. The forged billets were reheated in walking beam furnace and rolled to coil, the stocks were rolled by Controlled Rolling and Cooling Technology (CRCT), so rolled at low temperature by water spraying applied in rolling stage and acceleratly cooled before coiling. Rolled coils were cold drawed to the degree of $27\%$ of area reduction without heat treatment. Microstructual observation, tensile test, compression test and charpy impact tests were conducted. The mechanical properties of the steels were changed by area reduction of cold drawing and it is founded that there are optimum level of cold drawing to minimize compression stress for these steels. From the result of this study, it is conformed that mechanical properties and microstructure of C-Si-Mn-V steels for cold forming were enhanced by accelerated cooling and founded optimum level of cold drawing.

  • PDF

Effect of Ti addition on the fracture toughness of Al-Ti-B alloys synthesized by high energy ball milling and spark plasma sintering (고 에너지 볼 밀링과 SPS 성형에 의해 제조된 Al-Ti-B합금의 파괴인성에 미치는 Ti의 영향)

  • 김지희;김선진;김준기
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.84-84
    • /
    • 2003
  • The effects of Ti addition on microstructure and mechanical properties of (Al+Xat.%Ti)2at%B (X=0.5, 1, 2) fabricated by mechanical alloying and spark plasma sintering (SPS) were investigated. These alloys were prepared by high energy ball milling (attritor) and then fracture toughness was investigated by using a charpy impact tester. The SPS method was used to consolidate (Al+Xat.%Ti)fat.%B with the pressure of 50MPa. The powders were successfully consolidated to alloy which the theoretical density is 99%. It was confirmed that the fracture toughness of Al-Bat.% matrix composites was increased by the addition of Ti.

  • PDF

Material Degradation in KS D 3503 SS400 Rolled Steel at $179^{\circ}C$ (KS D 3503 SS400 압연강 $179^{\circ}C$에서의 재질열화 연구)

  • Baek, Un-Bong;Park, Jong-Seo;Nahm, Seung-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.13-18
    • /
    • 2006
  • In spite of frequent defect in industrial boilers, life assessment or diagnostic method for them has not been actively studied. In this research, SS400 carbon steel used in industrial boilers is simulated with artificial aging heat treatment. To do qualitative life assessment, differences in micro-structures and hardness of SS400 by the degradation time are studied. In addition, variation in material properties by aging was observed with the tensile test at room temperature and $179^{\circ}C$ and changes in ductile to brittle transition temperature was observed with the charpy impact test performed at several test temperature.

Effects of Pre-Strains on Failure Assessment Analysis to API 5L X65 Pipeline

  • Baek, Jong-Hyun;Kim, Young-Pyo;Kim, Woo-Sik;Seok, Chang-Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.3
    • /
    • pp.219-223
    • /
    • 2009
  • This paper prescribed the structural integrity of the API 5L X65 pipeline subjected to tensile pre-strain. The effects of pre-strain on the mechanical properties of API 5L X65 pipe were substantially investigated through a variety of the experimental procedures. Axial tensile pre-strain of 1.5, 5 and 10% was applied to plate-type tensile specimens cut from the pipe body prior to mechanical testing. Tensile test revealed that yield strength and tensile strength were increased with increasing tensile pre-strain. The increasing rate of the yield strength owing to the pre-strain is greater than that of the tensile strength. However, the pre-strain up to 5% had a little effect on the decreasing of the fracture toughness. The structural integrity of the API 5L X65 pipeline subjected to large plastic deformation was evaluated through the fitness-for service code.

Effects of Tempering Treatment on Microstructure and Mechanical Properties of Cu-Bearing High-Strength Steels (템퍼링에 따른 Cu 첨가 고강도강의 미세조직과 기계적 특성)

  • Lee, Sang-In;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.550-555
    • /
    • 2014
  • The present study deals with the effects of tempering treatment on the microstructure and mechanical properties of Cu-bearing high-strength steels. Three kinds of steel specimens with different levels of Cu content were fabricated by controlled rolling and accelerated cooling, ; some of these steel specimen were tempered at temperatures ranging from $350^{\circ}C$ to $650^{\circ}C$ for 30 min. Hardness, tensile, and Charpy impact tests were conducted in order to investigate the relationship of microstructure and mechanical properties. The hardness of the Cu-added specimens is much higher than that of Cu-free specimen, presumably due to the enhanced solid solution hardening and precipitation hardening, result from the formation of very-fine Cu precipitates. Tensile test results indicated that the yield strength increased and then slightly decreased, while the tensile strength gradually decreased with increasing tempering temperature. On the other hand, the energy absorbed at room and lower temperatures remarkably increased after tempering at $350^{\circ}C$; and after this, the energy absorbed then did not change much. Suitable tempering treatment remarkably improved both the strength and the impact toughness. In the 1.5 Cu steel specimen tempered at $550^{\circ}C$, the yield strength reached 1.2 GPa and the absorbed energy at $-20^{\circ}C$ showed a level above 200 J, which was the best combination of high strength and good toughness.