• Title/Summary/Keyword: charging and discharging test

Search Result 74, Processing Time 0.029 seconds

Study on Capacitance Decreasing Characteristics of Polymer Capacitor Depending on Temperature with Charging-Discharging Condition (고분자캐패시터에 대한 충방전 조건에서의 온도에 따른 정전용량감소 특성 연구)

  • Jeong, Ui-Hyo;Lim, Hong-Woo;Hyung, Jae-Phil;Ko, Min-Ji;Jung, Chang-Uk;Cho, Jeong-Ha;Jang, Joong-Soon
    • Journal of Applied Reliability
    • /
    • v.17 no.1
    • /
    • pp.66-71
    • /
    • 2017
  • Purpose: Polymer capacitors are known to have very high reliability as compared with liquid electrolytic capacitors, but their capacity has been reported to decrease in charge and discharge at low temperature. The purpose of this study to clarify these characteristics. Methods: In order to clarify these characteristics, charging-discharging tests were carried out for 200 hours with three different capacities and at 5 different temperature from $5^{\circ}C$ to $100^{\circ}C$. Results: As a result of the test, it was confirmed that the capacity of the polymer capacitor was decreased with higher capacity and lower temperature. Conclusion: Such a failure phenomenon was caused by the shrinkage and expansion characteristics of the polymer used therein, it is presumed that this failure phenomenon is due to the complex pore structure made by etching.

Stochastic Real-time Demand Prediction for Building and Charging and Discharging Technique of ESS Based on Machine-Learning (머신러닝기반 확률론적 실시간 건물에너지 수요예측 및 BESS충방전 기법)

  • Yang, Seung Kwon;Song, Taek Ho
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.157-163
    • /
    • 2019
  • K-BEMS System was introduced to reduce peak load and to save total energy of the 120 buildings that KEPCO headquarter and branch offices use. K-BEMS system is composed of PV, battery, and hybrid PCS. In this system, ESS, PV, lighting is used to save building energy based on demand prediction. Currently, neural network technique for short past data is applied to demand prediction, and fixed scheduling method by operator for ESS charging/discharging is used. To enhance this system, KEPCO research institute has carried out this K-BEMS research project for 3 years since January 2016. As the result of this project, we developed new real-time highly reliable building demand prediction technique with error free and optimized automatic ESS charging/discharging technique. Through several field test, we can certify the developed algorithm performance successfully. So we will describe the details in this paper.

A study on charging and electrical stability characteristics with no-insulation and metal insulation in form of racetrack type coils

  • Quach, Huu Luong;Kim, Ho Min
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.3
    • /
    • pp.13-19
    • /
    • 2020
  • This study presents the experiment and simulation results on the magnetic field response and electrical stability behaviors of no-insulation (NI) and metal insulation with stainless steel tape (MI-SS) which wound in form of racetrack type coils. First of all, the structural design of the racetrack type bobbin was shown along with its parameters. Then, the current-voltage tests were carried out to measure the critical current of both test coils. Also, the sudden discharging and charging tests were performed in the steady state to estimate the decay field time and magnetic field response, respectively. Finally, the overcurrent tests were conducted in the transient state to investigate the electrical stability of these test coils. Based on the experimental results, the contact surface resistances were calculated and applied to the field coils (FCs) of 10-MW-class second generation high temperature superconducting generator (2G HTSG) used in wind offshore environment. The charging delay time and electrical stability for NI and MI-SS HTS FCs of 10-MW-class 2G HTSG are analyzed by the equivalent circuit model and the key parameters which were obtained from the electromagnetic finite element analysis results.

Parameter Identification of 3R-C Equivalent Circuit Model Based on Full Life Cycle Database

  • Che, Yanbo;Jia, Jingjing;Yang, Yuexin;Wang, Shaohui;He, Wei
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1759-1768
    • /
    • 2018
  • The energy density, power density and ohm resistance of battery change significantly as results of battery aging, which lead to decrease in the accuracy of the equivalent model. A parameter identification method of the equivale6nt circuit model with 3 R-C branches based on the test database of battery life cycle is proposed in this paper. This database is built on the basis of experiments such as updating of available capacity, charging and discharging tests at different rates and relaxation characteristics tests. It can realize regular update and calibration of key parameters like SOH, so as to ensure the reliability of parameters identified. Taking SOH, SOC and T as independent variables, lookup table method is adopted to set initial value for the parameter matrix. Meanwhile, in order to ensure the validity of the model, the least square method based on variable forgetting factor is adopted for optimizing to complete the identification of equivalent model parameters. By comparing the simulation data with measured data for charging and discharging experiments of Li-ion battery, the effectiveness of the full life cycle database and the model are verified.

The Experiment of High Voltage Capacitor Charger for Pulsed Power Application (펄스전원용 고압커패시터 충전기 시험)

  • Jang, S.R.;Ahn, S.H.;Ryoo, H.J.;Kim, J.S.;Kim, Y.B.;Kim, J.S.;Lee, B.H.;Kim, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1025_1026
    • /
    • 2009
  • This paper introduces the test a rapid pulsed power charging system for pulsed power application. The charger is designed based on three-phase series resonant inverter followed by air cooled step-up transformers. It has many advantages of lower weight, small size and high efficiency compared with large bulky traditional pulse power charging system. To apply 150kJ pulsed power system, detail test was carried out at various condition and its results shows 90% efficiency at full load condition. And additional experiments such as short, open, and self discharging during charging status are performed to verify reliable operation at abnormal condition and it was confirmed that developed capacitor charger showed very reliable operation all over the tests.

  • PDF

A Capacitor Charging Power Supply(CCPS) using Dead Time Control Circuit for Stable High Repetition (안정적 고반복을 위한 지연시간 제어회로가 적용된 커패시터 충전용 전원장치)

  • Lim, Tae Hyun;Hwang, Sun Mook;Kook, Jeong Hyeon;Yim, Dong Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.55-60
    • /
    • 2017
  • Capacitor Charging Power Supply(CCPS) is one of the most important components of a pulsed power system. The CCPS is widely used in source of lasers, accelerators and plasma generators. This paper presents design of a dead time control circuit and operation characteristics for stable high repetition rate of high voltage CCPS. The CCPS consists of battery, high voltage transformer and controller with a dead time control circuit. A dead time control circuit was simulated by PSpice. The performance test of the CCPS was carried out with a 7[nF] load capacitor at output voltage of 50[kV] and a pulse repetition frequency of 100[Hz]. As a result, we can verify that charging and discharging waveform is stable at 100[Hz]. The experiment results indicate that 3[ms] dead time made it possible for stable high repetition rate of 100[Hz]. This paper paves the way for designing an advanced CCPS which is more applicable outside experiments.

A Monitoring Unit for Lead Storage Batteries in Stand Alone PV Generation Systems (독립형 태양광 발전소의 연 축전지 모니터링장치 개발)

  • Moon, Chae-Joo;Kim, Tae-Gon;Chang, Young-Hag;Kjm, Eui-Sun;Lim, Jung-Min
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.2
    • /
    • pp.1-7
    • /
    • 2009
  • Use of the PV(photovoltaic) generation system is increased in such areas as remote mountain places or islands at which electrical energy is not serviced. The stand alone PV system is required the power storage products such as battery, fly wheel and super capacitor. Several lead storage batteries are connected in series to get high voltages. The life of lead storage battery is shortened when over charge or over discharge takes place. So, it is needed to control batteries not to be overcharged or be discharged deeply. Voltage of each battery was ignored in former control methods in which overall voltage was used to control charge or discharge battery. In this study, the charging and discharging voltage variations of sealed lead storage batteries with l2V/l.2A were investigated step by step experiments. The results of the test show that one should consider and specify the state of each battery to prevent overcharge or deep discharge. With the basis of the experiments, we designed a monitoring unit to monitor battery voltages simultaneously using micro-controller. The unit measures voltage of 20 batteries simultaneously and displays data on the color LCD monitor with curved line graph. It also sends data to PC using the RS232C communication port. The designed unit was adapted to stand alone PV system with 1kW capacity and lead storage batteries are connected to the PV generation system. The number of lead storage batteries was 10 in series and 12V/250Ah each. Resistive load with 3kW was used for discharging.

A Study on the Effect of Pressure upon A.C Partial Discharge in Insulating Oil (제어유의 문류품분효전에 미치는 형력의 영향)

  • Sang-Hoon Kook
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.32 no.7
    • /
    • pp.227-233
    • /
    • 1983
  • Noticing that action of gaseous phase in insulating oil concerns to the discharging characteristics, I investigated the smalness pressure effects on quantity of the partial discharge and discharging pulse frequency. Tests are carried out between the niddle points in insulating oil at pressure being changed by gradual charge of inert gas Ar. At pressure as low as of 0.1-0.5 torr pulse frequency and maximum partial discharge reach peak while at pressure haigher than 20 torr no pulse is observed. The fact that pulse frequency has peak value at certain presure, which is changed either by charging Ar or by adding oil, implies that the action of gaseous phase depends on pressure. Test results are that partial discharge pulse are governed by pressure of Ar-charged oil, and less partial discharge pulses correspond to smaller bubbles whereas more partial descharge pulses correspond to larger bubbles.

  • PDF

The Effect of Additives on the Properties of Zn Electrode in Zn/AgO Secondary Battery (Zn/AgO Secondary Battery용 아연 양극의 성능에 미치는 첨가제의 영향)

  • Park, Kyung-Wha;Kim, Chang-Hwan;Moon, Kyung-Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.3
    • /
    • pp.196-202
    • /
    • 2003
  • We investigated the effect of both 4 types additives and $0.5wt\%\;Pb_3O_4$ which have been reported to show an improvement on the performance of Zinc anode. And Experimental methods such as corrosion potential measurement, potentiodynamic polorization test and charging-discharging cycle life test were carried out in $40 wt\%$ KOH with $Pb_3O_4(0.5, \;10\;&\;2.0wt\%)$ and 4 types additives $(0.4wt\%\;of\;Ca(OH)_2$, 0.025M of Citrate, Tartrate and Gluconate). Corrosion potential was shifted to high direction and also changed to high and low direction repeatedly with increasing of $Pb_3O_4$ quantity. However by adding $0.5wt\%\;Pb_3O_4$, corrosion potential shifted to low direction and showed stable condition. Furthermore it was well known that corrosion resistance was predominantly increased compared to no addition and improved charging-discharging property with adding additives. By SEM analysis, it was concluded that the morphology of surface in case of only $0.5wt\%\;Pb_3O_4$ addition was nearly the same as that of Tartrate additive and in the other additives such as $Ca(OH)_2$, Citrate, Tartrate and Gluconate, their morphologies showed dendrite growth. Eventually it was thought that the additive of Tartrate indicated comparatively good corrosion resistance effect as well as charging-discharging property improvement among those four types additives.

Designing Test Methods for IT-Enabled Energy Storage System to Evaluate Energy Dynamics

  • Kim, Young Gon;Kim, Dong Hoon;Lee, Eun-Kyu
    • Journal of Information Processing Systems
    • /
    • v.13 no.6
    • /
    • pp.1487-1495
    • /
    • 2017
  • With increasing interests in renewables, more consumers are installing an energy storage system (ESS) in their backyards, and thus, the ESS will play a critical role in the emerging smart grid. Due to mechanical properties, however its operational dynamics must be well understood before connecting the ESS to the smart grid (and eventually to an IT system). To this end, we investigate charging and discharging processes in detail. This paper, then, proposes methods for four type tests (state of charge test, conversion efficiency test, response time test, and ramp rate test) that can assess the dynamics of the ESS. The proposed methods can capture accurate delay values of mechanical processes in the ESS, and it is expected for those values to help design real-time communication systems in the smart grid involving the ESS.