• Title/Summary/Keyword: charge-density method

Search Result 334, Processing Time 0.028 seconds

A Study on the Si-SiO$_2$Interface State Characteristics of Nonvolatile SNOS FET Memories using The Charge Pumping Method (Charge Pumping 방법을 이용한 비휘발성 SNOS FET기억소자의 Si-SiO$_2$계면상태 특성에 관한 연구)

  • 조성두;이상배;문동찬;서광열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.05a
    • /
    • pp.82-85
    • /
    • 1992
  • In this study, charge pumping method was used to investigate the Si-SiO$_2$interface characteristics of the nonvolatile SNOSFET memory devices, fabricated using the CMOS 1 Mbit processes (1.2$\mu\textrm{m}$ design rule), with thin oxide layer of 30${\AA}$ thick and nitride layer of 525${\AA}$ thick on the n-type silicon substrate (p-channel). Charge pumping current characteristics with the pulse base level were measured for various frequencies, falling times and rising times. By means of the charge dynamics in a non-steady state, the average Si-SiO$_2$interface state density and capture cross section were determined to be 3.565${\times}$10$\^$11/cm$\^$-2/eV$\^$-1/ and 4.834${\times}$10$\^$-16/$\textrm{cm}^2$, respectively. However Si-SiO$_2$ interface state densities were disributed 2.8${\times}$10$\^$-11/~5.6${\times}$10$\^$11/cm$\^$-2/~6${\times}$10$\^$11/cm$\^$-2/eV$\^$-1/ in the lover half of energy gap.

  • PDF

Self-consistent electronic structure of impurities using the recursion method

  • Park, Jin-Ho;Cho, Hwa-Suck;Lee, Gun-Woo
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.2 no.1
    • /
    • pp.13-19
    • /
    • 1998
  • We have calculated the electronic structure of impurity atoms in metal host by using the tight binding model in the recursion method. For a self-consistent calculation, we assumed that the effect of impurity introduction was localized only at the impurity site and its neighbours. We calculated the Madelung term by limiting the contribution to Vm of the charge perturbations to the first shell around the impurity with Evjen technique. The calculated local density of states and charge transfer values have been compared with the experimental values for a single impurity in metal host. We fund that d-reso-nance state came from the repulsive interaction between impurity d-state and host band, and the position of d-resonance state depended on the difference of valence electrons between the host and the impurity. the results also showed that the charge transfer value between an impurity and host metal was comparable to the ionicity difference between them.

A Study on the Space Charge Polarity Measurement Teasurement Technology of Cross-Linked Polyethylene for Power Cable (전력케이블용 가교폴리에틸렌의 공간전하 극성측정기술에 관한 연구)

  • 국상훈;서장수;김병인;박중순
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.6 no.6
    • /
    • pp.23-31
    • /
    • 1992
  • Charged particle in the polymers is supposed to affect the electrical conduction and to lead them th dielectrical breakdown finally. So we measured the space charge distribution made by application of high electric field and evaluated the polarity of the charged particle affected on electrical conduction and space charge formed in the insulating materials by using temperature gradient thermally stimulated current measurement method(TG-TSC measurement). As a result, in the cross-linked polyethylene, A-peak was caused from dipole polarization, C-peak was caused from ionic space charge polarization and D-peak was injected trap hole. Also we found it crossible the evaluated the polarity of injected trap carrier and electron(or hole) of carrier trap in the cross-lined polyethylene. We found that ${\gamma}$-ray irradiated low density polyethylene had a relation to the electronic trap and we also could get the value of electric field distribution in the samples of which evaluation was available.

  • PDF

Thermal Deintercalation of Ethylammonium-Aluminosilicate Intercalates with Various Layer Charges

  • Choy, Jin-Ho;Choi, Young-Joon;Han, Yang-Su
    • The Korean Journal of Ceramics
    • /
    • v.1 no.1
    • /
    • pp.40-44
    • /
    • 1995
  • Ethylammonium-layered aluminosilicates intercalates were prepared by ion exchange reaction between the layered silicates with different layer changes density of 0.32∼0.41 e per unit formula and ethylammonium chloride. A kinetic study on the thermal deintercalation of the ethylammonium-layered silicate intercalates was carried out by range of 350℃ to 480℃ (heating rate of 10℃/min). Based on the Ozawa's method, the activation energies of the thermal deintercalation reaction were estimated as 171.2∼133.0 kJ/mol, which increase linearly with the layer charge densities.

  • PDF

Effect of Mo-doped LiFePO4 Positive Electrode Material for Lithium Batteries

  • Oh, Seung-Min;Sun, Yang-Kook
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.172-177
    • /
    • 2012
  • Mo-doped $LiFePO_4$ was synthesized via co-precipitation method using sucrose as the carbon source. Structure, surface morphology, and the electrochemical properties of the synthesized olivine compounds were investigated using Rietveld refinement of X-ray diffraction data (XRD), scanning electron microscopy (SEM), and electrochemical charge-ischarge tests. Spherical morphology with the particle size of ${\sim}8{\mu}m$ authenticated the enhanced tap density and volumetric energy density of the synthesized materials. Charge-discharge behavior of $LiFePO_4$ and Mo-doped $LiFePO_4$ cells demonstrated a specific capacity of 130 and 145 mAh $g^{-1}$, respectively. Mo-doped $LiFePO_4$ cells exhibited an excellent discharge capacity at 96 mAh $g^{-1}$ at 7 C-rate.

Novel State-of-Charge Estimation Method for Lithium Polymer Batteries Using Electrochemical Impedance Spectroscopy

  • Lee, Jong-Hak;Choi, Woo-Jin
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.237-243
    • /
    • 2011
  • Lithium batteries are widely used in mobile electronic devices due to their higher voltage and energy density, lighter weight and longer life cycle when compared to other secondary batteries. In particular, a high demand for lithium batteries is expected for electric cars. In the case of the lithium batteries used in electric cars, driving distance must be calculated accurately and discharging should not be done below a level that makes it impossible to crank. Therefore, accurate information on the state-of-charge (SOC) becomes an essential element for reliable driving. In this paper, a novel method for estimating the SOC of lithium polymer batteries using AC impedance is proposed. In the proposed method, the parameters are extracted by fitting the measured impedance spectrum on an equivalent impedance model and the variation in the parameter values at each SOC is used to estimate the SOC. Also to shorten the long length of time required for the measurement of the impedance spectrum, a novel method is proposed that can extract the equivalent impedance model parameters of lithium polymer batteries with the impedance measured at only two specific frequencies. Experiments are conducted on lithium polymer batteries, with similar capacities, made by different manufacturers to prove the validity of the proposed method.

A Density Functional Study of Furofuran Polymers as Potential Materials for Polymer Solar Cells

  • Xie, Xiao-Hua;Shen, Wei;He, Rong-Xing;Li, Ming
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2995-3004
    • /
    • 2013
  • The structural, electronic, and optical properties of poly(3-hexylthiophene) (P3HT) have been comprehensively studied by density functional theory (DFT) to rationalize the experimentally observed properties. Rather, we employed periodic boundary conditions (PBC) method to simulate the polymer block, and calculated effective charge mass from the band structure calculation for describing charge transport properties. The simulated results of P3HT are consistent with the experimental results in band gaps, absorption spectra, and effective charge mass. Based on the same calculated methods as P3HT, a series of polymers have been designed on the basis of the two types of building blocks, furofurans and furofurans substituted with cyano (CN) groups, to investigate suitable polymers toward polymer solar cell (PSC) materials. The calculated results reveal that the polymers substituted with CN groups have good structural stability, low-lying FMO energy levels, wide absorption spectra, and smaller effective masses, which are due to their good rigidity and conjugation in comparison with P3HT. Besides, the insertion of CN groups improves the performance of PSC. Synthetically, the designed polymers PFF1 and PFF2 are the champion candidates toward PSC relative to P3HT.

High Temperature Superconducting (HTS) Films by EPD Method addition with $BaF_2$ and PEG

  • Soh, Deawha;Korobova, N.;Park, Jung-Cheul;Jeun, Yong-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.250-254
    • /
    • 2000
  • High temperature superconducting films deposited on metal Ag wire were prepared with YBCO powders by electrophoretic deposition method. $I_2$was used as additives for surface charge of YBCO particles. When 2~3 wt.% $BaF_2$ was added in the YBCO suspension, the pores and cracks of film surface were decreased and film density could be increased. In case of YBCO films, the critical current density ($J_{c}$) was calculated at the value of $1458{\;}A/\textrm{cm}^2$ (77K, 0K) by 4 point prove method.

  • PDF

Charge trapping characteristics of high-k $HfO_2$ layer for tunnel barrier engineered nonvolatile memory application (엔지니어드 터널베리어 메모리 적용을 위한 $HfO_2$ 층의 전하 트랩핑 특성)

  • You, Hee-Wook;Kim, Min-Soo;Park, Goon-Ho;Oh, Se-Man;Jung, Jong-Wan;Lee, Young-Hie;Chung, Hong-Bay;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.133-133
    • /
    • 2009
  • It is desirable to choose a high-k material having a large band offset with the tunneling oxide and a deep trapping level for use as the charge trapping layer to achieve high PIE (Programming/erasing) speeds and good reliability, respectively. In this paper, charge trapping and tunneling characteristics of high-k hafnium oxide ($HfO_2$) layer with various thicknesses were investigated for applications of tunnel barrier engineered nonvolatile memory. A critical thickness of $HfO_2$ layer for suppressing the charge trapping and enhancing the tunneling sensitivity of tunnel barrier were developed. Also, the charge trap centroid and charge trap density were extracted by constant current stress (CCS) method. As a result, the optimization of $HfO_2$ thickness considerably improved the performances of non-volatile memory(NVM).

  • PDF

Theoretical Consideration of Nondestructive Testing by use of Vertical Magnetization and Magneto-Optical Sensor

  • Lee, Jinyi;Tetsuo Shoji;Dowon Seo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.640-648
    • /
    • 2004
  • This paper describes a new magnetization method for non-destructive testing with magneto-optical sensor (denoted as MO sensor) which have the following characteristic : high observation sensitivity, independence of the crack orientation, and precise imaging of a complex crack geometry such as multiple cracks. When a magnetic field is applied normally to the surface of a specimen which is significantly larger than its defects, approximately the same magnetic charge per unit area occurs on the surface of the specimen. If there is a crack in the specimen, magnetic charge per unit area has the same value at the bottom of the crack. The distribution of the vertical component of the magnetic flux density, B$\_$Z/, is almost uniform over the no-crack area (denoted as B$\_$Z,BASE/), while the magnetic flux density is smaller in the surroundings of the crack(denoted as B$\_$Z,CRACK/) If B$\_$Z, BASE/ is a bit larger than the saturated magnetic flux density of the MO sensor (B$\_$s/) , then small magnetic domains occur over the crack area and a large domain over the non-crack area because B$\_$Z,CRACK/ is smaller than B$\_$s/.