• 제목/요약/키워드: charge storage density

검색결과 111건 처리시간 0.022초

Film형 Supercapacitor용 $V_2O_5$전극의 Carbon 첨가에 따른 전기화학적 특성 (Electrochemical Properties of $V_2O_5$ Electrodes as a Function of Additon of Carbon for Film Supercapacitor)

  • 김명산;김종욱;구할본;박복기
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 영호남학술대회 논문집
    • /
    • pp.39-41
    • /
    • 2000
  • Carbon is an attractive candidate for use in eletrochemical supercapacitors that depend on charge storage in the electrode/eletorlyte international double layer. Property of an electrical double layer capacitor depend both on the technique used to prepare the electrode and on the current collector structure. The study is to research that $V_2O_5$-carbon (SP270) composite electrode for supercapacitor. The discharge capacitance of $V_2O_5$-SP270 (20wt%) in 1st and 35cyc1e was 14F/g and 8.5F/g at current density of $0.1mA/cm^2$. The discharge process of $V_2O_5$-SP270 (20wt%) composite electrode is larger than that others.

  • PDF

$(Pb_{1-x}La_x)(Zr_{0.5}Ti_{0.5})O_3$ 박막의 La 치환량에 따른 특성 (Characteristics of $(Pb_{1-x}La_x)(Zr_{0.5}Ti_{0.5})O_3$ thin films as a function of La content)

  • 정낙원;이성환;이동영;김동훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권8호
    • /
    • pp.894-900
    • /
    • 2006
  • The electrical characteristics associated with crystal structure changes as a function of La content for $(Pb_{1-x}La_x)(Zr_{0.5}Ti_{0.5})O_3$ thin films were investigated for applications in memory capacitors. Tetragonality of PLZT films decreased with increasing La content. Thin films with La $\geq$ 20 mol% were found to be cubic. Films with La $\geq$ 12 mol% exhibited broader dielectric peaks compared to those of bulk ceramics and behaved as relaxer ferroelectrics. Tetragonal PLZT film with 12 mol% La had a dielectric constant maximum of 1330 at room temperature and a charge storage density of ${\sim}18{\mu}C/cm^2$ at 5 V. Decrease in coercive field and remnant polarization with increase in La content were resulting from less dipolar response caused by the decreased crystal anisotropy. The leakage current densities $<10^{-8}A/cm^2$ up to 5 V bias voltage were observed for the films with La $\geq$ 14 mol%.

Ruthenium Oxide Nanoparticles Electrodeposited on the Arrayed ITO Nanorods and Its Application to Supercapacitor Electrode

  • Ryu, Ilhwan;Lee, Jinho;Park, Dasom;Yim, Sanggyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.296-296
    • /
    • 2013
  • Supercapacitor is a capacitor with extraordinarily high energy density, which basically consists of current collector, active material and electrolyte. Ruthenium oxide ($RuO_2$) is one of the most widely studied active materials due to its high specific capacitance and good electrical conductivity. In general, it is known that the coating of $RuO_2$ on nanoarchitectured current collector shows improved performance of energy storage device compared to the coating on the planar current collector. Especially, the surface structure with standing coaxial nanopillars are most desirable since it can provide direct paths for efficient charge transport along the axial paths of each nanopillars and the inter-nanopillar spacing allows easy access of electrolyte ions. However, well-known fabrication methods for metal or metal oxide nanopillars, such as the process using anodize aluminum oxide (AAO) templates, often require long and complicated nanoprocess.In this work, we developed relatively simple method fabricating indium tin oxide (ITO) nanopillars via sputtering. We also electrodeposited $RuO_2$ nanoparticles onto these ITO nanopillars and investigated its physical and electrochemical properties.

  • PDF

하이브리드 커패시터를 적용한 소형 태양광 전원장치 (The Small Photovoltaic power supply using Hybrid Supercapacitor)

  • 김태엽
    • 전기전자학회논문지
    • /
    • 제23권3호
    • /
    • pp.826-831
    • /
    • 2019
  • 소형 독립형 태양광 전원장치는 조명장치, CCTV 등에 많이 활용되고 있다. 이러한 장치가 경쟁력을 가지기 위해서는 배터리와 같은 전력저장장치 수명이 매우 중요하다. 하이브리드 커패시터는 고밀도와 장수명의 장점을 가지고 있다. 본 논문에서는 하이브리드 커패시터를 이용한 독립형 태양광 전원장치를 제안한다. 전력변환장치의 구성하기 위해 하이브리드 커패시터의 충방전 특성 및 내부저항을 측정하였다. 일사량 변화에도 안정적인 최대 출력점 추종제어 알고리즘을 제시하였다. 제시한 시스템의 타당성을 검증하기 위해 18W의 하이브리드 커패시터와 10W태양광 전지를 이용하여 시제품을 제작하고 실험하였다.

탄소나노튜브/흑연펠트 전극의 산소작용기를 활용한 바나듐 레독스 흐름 전지의 수소발생 억제 효과 (Suppressing Effect of Hydrogen Evolution by Oxygen Functional Groups on CNT/ Graphite Felt Electrode for Vanadium Redox Flow Battery)

  • 김민성;고민성
    • 한국표면공학회지
    • /
    • 제54권4호
    • /
    • pp.164-170
    • /
    • 2021
  • Vanadium redox flow batteries (VRFB) have emerged as large-scale energy storage systems (ESS) due to their advantages such as low cross-contamination, long life, and flexible design. However, Hydrogen evolution reaction (HER) in the negative half-cell causes a harmful influence on the performance of the VRFB by consuming current. Moreover, HER hinders V2+/V3+ redox reaction between electrode and electrolyte by forming a bubble. To address the HER problem, carbon nanotube/graphite felt electrode (CNT/GF) with oxygen functional groups was synthesized through the hydrothermal method in the H2SO4 + HNO3 (3:1) mixed acid solution. These oxygen functional groups on the CNT/GF succeed in suppressing the HER and improving charge transfer for V2+/V3+ redox reaction. As a result, the oxygen functional group applied electrode exhibited a low overpotential of 0.395 V for V2+/V3+ redox reaction. Hence, this work could offer a new strategy to design and synthesize effective electrodes for HER suppression and improving the energy density of VRFB.

Facile Electrodeposition Technique for the Fabrication of MoP Cathode for Supercapacitor Application

  • Samanta, Prakas;Ghosh, Souvik;Murmu, Naresh Chandra;Lee, Joong Hee;Kuila, Tapas
    • Composites Research
    • /
    • 제34권6호
    • /
    • pp.345-349
    • /
    • 2021
  • The continued environmental pollution caused by fossil fuel consumption has prompted researchers around the world to develop environmentally friendly energy technologies. Electrochemical energy storage is the significant area of research in this development process, and the research significance of supercapacitors in this field is increasing. Herein, a simple electrodeposition synthetic route was explored to develop the MoP layered cathode material. The layered structure provided a highly ion-accessible surface for smooth and faster ion adsorption/desorption. After Fe was doped into MoP, the morphology of MoP changes and the electrochemical performance was significantly improved. Specific capacitance value of the binder-free FeMoP electrode was found to be 269 F g-1 at 2 A g-1 current density in 6 M aqueous KOH electrolyte. After adding Fe to MoP, an additional redox contribution was observed in the redox conversion from Fe3+ to Fe2+ redox pair, and the charge transfer kinetics of MoP was effectively improved. This research can provide guidance for the development of supercapacitor electrode materials through simple electrodeposition technology.

Self-Supporting 3D-Graphene/MnO2 Composite Supercapacitors with High Stability

  • Zhaoyang Han;Sang-Hee Son
    • 한국전기전자재료학회논문지
    • /
    • 제36권2호
    • /
    • pp.175-185
    • /
    • 2023
  • A hybrid supercapacitor is a promising energy storage device in view of its excellent capacitive performance. Commercial three-dimensional foam nickel (Ni) can be used as an ideal framework due to an interconnected network structure. However, its application as an electrode material for supercapacitors is limited due to its low specific capacity. Herein, we report a successful growth of MnO2 on the surface of graphene by a one-step hydrothermal method; thus, forming a three-dimensional MnO2-graphene-Ni hybrid foam. Our results show that the mixed structure of MnO2 with nanoflowers and nanorods grown on the graphene/Ni foam as a hybrid electrode delivers the maximum specific capacitance of 193 F·g-1 at a current density 0.1 A·g-1. More importantly, the hybrid electrode retains 104% of its initial capacitance after 1,000 charge-discharge cycles at 1 A·g-1; thus, showing the potential application as a stable supercapacitor electrode.

Ru를 첨가한 음극활물질 Li4Ti5O12의 전기화학적 특성 (Electrochemical Characteristics of Ru Added Li4Ti5O12 as an Anode Material)

  • 조우람;나병기
    • 청정기술
    • /
    • 제20권4호
    • /
    • pp.433-438
    • /
    • 2014
  • 전기자동차와 하이브리드 전기자동차에 요구되는 높은 충 방전 속도, 안전성, 대형화에 적합한 충 방전 전지의 개발은 많은 관심을 받고 있다. 스피넬 구조의 $Li_4Ti_5O_{12}$는 리튬이온이차전지의 음극활물질로 충 방전 시 부피변화가 거의 없기 때문에 수명특성이 뛰어나고, 전해액이 분해되는 전위보다 높은 작동 전압을 갖기 때문에 안정한 장점이 있다. 본 실험에서는 $Li_4Ti_5O_{12}$의 단점인 전기전도성을 향상시키고자 소량의 Ru를 첨가하여 $Li_4Ti_5O_{12}$를 고상법으로 제조하여 테스트하였다. TGA-DTA, XRD, SEM, 충 방전 테스트를 통해 분석을 실시하였다. Ru를 첨가하였을 때 용량은 약간 감소하였지만, 분극현상이 감소하는 것을 확인하였다. 그리고 Ru를 3%와 4% 첨가하였을 때 높은 전류밀도인 10 C-rate 충 방전에서 용량감소율이 줄었다.

Zr계 수소저장합금의 전극특성에 미치는 은 첨가의 영향 (The Effects of Ag Addition on the Electrode Properties of Hydrogen Storage Alloys)

  • 노학;정소이;최승준;최전;서찬열;박충년
    • 한국수소및신에너지학회논문집
    • /
    • 제8권3호
    • /
    • pp.137-141
    • /
    • 1997
  • The effects of Ag addition to Zr-based hydrogen storage alloys ($Zr_{0.7}Ti_{0.3}V_{0.4}Ni_{1.2}Mn_{0.4}$, $Zr_{0.7}Ti_{0.3}V_{0.4}Ni_{1.2}Mn_{0.3}Cr_{0.1}$ and $Zr_{0.6}Ti_{0.4}V_{0.4}Ni_{1.2}Mn_{0.3}Fe_{0.1}$) on the electrode properties were examined. Ag-free and Ag-added Ze-based alloys were prepared by arc melting, crushed mechanically, and subjected to the electrochemical measurement. In $Zr_{0.7}Ti_{0.3}V_{0.4}Ni_{1.2}Mn_{0.4}$ alloy, 0.08 wt% Ag addition to the alloy improved the activation rate. Also Ag addition improved both activation property and discharge capacity in $Zr_{0.7}Ti_{0.3}V_{0.4}Ni_{1.2}Mn_{0.3}Cr_{0.1}$. For these Ag-added alloys, discharge capacities with the change of charge-discharge current density(10mA, 15mA and 30mA) are almost constant. Showing very high rate capability, discharge capacity of $Zr_{0.6}Ti_{0.4}V_{0.4}Ni_{1.2}Mn_{0.3}Fe_{0.1}$ alloy increased by Ag addition to the alloy. When the amount of Ag addition in $Zr_{0.7}Ti_{0.3}V_{0.4}Ni_{1.2}Mn_{0.4}$ alloy increased too much, the electrode properties became worse. Unveiling mechanism of effect of Ag addition is now progressing in our laboratory.

  • PDF

Energy Management and Performance Evaluation of Fuel Cell Battery Based Electric Vehicle

  • Khadhraoui, Ahmed;SELMI, Tarek;Cherif, Adnene
    • International Journal of Computer Science & Network Security
    • /
    • 제22권3호
    • /
    • pp.37-44
    • /
    • 2022
  • Plug-in Hybrid electric vehicles (PHEV) show great potential to reduce gas emission, improve fuel efficiency and offer more driving range flexibility. Moreover, PHEV help to preserve the eco-system, climate changes and reduce the high demand for fossil fuels. To address this; some basic components and energy resources have been used, such as batteries and proton exchange membrane (PEM) fuel cells (FCs). However, the FC remains unsatisfactory in terms of power density and response. In light of the above, an electric storage system (ESS) seems to be a promising solution to resolve this issue, especially when it comes to the transient phase. In addition to the FC, a storage system made-up of an ultra-battery UB is proposed within this paper. The association of the FC and the UB lead to the so-called Fuel Cell Battery Electric Vehicle (FCBEV). The energy consumption model of a FCBEV has been built considering the power losses of the fuel cell, electric motor, the state of charge (SOC) of the battery, and brakes. To do so, the implementing a reinforcement-learning energy management strategy (EMS) has been carried out and the fuel cell efficiency has been optimized while minimizing the hydrogen fuel consummation per 100km. Within this paper the adopted approach over numerous driving cycles of the FCBEV has shown promising results.