• Title/Summary/Keyword: charge sensitive amplifier

Search Result 17, Processing Time 0.018 seconds

고에너지 입자 검출기 STEIN의 아날로그회로 설계

  • Kim, Jin-Gyu;Nam, Ji-Seon;Seo, Yong-Myeong;Jeon, Sang-Min;Mcbride, Steve;Larson, Davin;Jin, Ho;Seon, Jong-Ho;Lee, Dong-Hun;Lin, Robert P.;Harvey, Peter
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.37.5-38
    • /
    • 2010
  • 경희대학교 우주탐사학과에서는 우주공간 탐사를 위해 Trio(TRiplet Ionospheric Observatory)-CINEMA(Cubesat for Ions, Neutrals, Electrons and MAgnetic fields)로 명명된 초소형 위성을 개발하고 있다. 과학임무는 지구 저궤도에서 고에너지 입자를 관측하는 것이며, 이를 위해 고에너지 (2~300keV) 입자 검출기와 자기장 측정기가 탑재된다. 저에너지 입자 검출기 시스템인 STEIN(SupraThermal Electrons, Ions, Neutrals)은 $1\times4$ Array의 개선된 실리콘 검출기와 이온, 전자, 중성입자를 분리할 수 있는 정전장 편향기, 그리고 신호를 처리하는 전자회로로 구성되어있다. 설계된 전자회로는 매우 작은 검출기 기판, 아날로그 기판과 디지털 기판으로 이루어져 있고, 475mW 이하의 저 전력으로 동작한다. 또한 2~100keV의 에너지를 1keV이하의 해상도로 30,000event/sec/pixel 까지 관측 할 수 있도록 회로를 설계하였다. 센서로 들어온 입자로 인해 발생한 펄스의 신호는 4개의 아날로그 회로가 담당하게 되는데, Folded cascode amplifier를 배치하여 증폭률을 높인 Charge sensitive amplifier를 통해 신호를 증폭하고, $2{\mu}s$ unipolar gaussian shaping amplifier를 통해 읽기 쉽게 처리된 신호를 상한파고선별기와 하한파고 선별기를 통해 유효 값 여부를 판단하고, 피크 검출기를 통해 피크의 타이밍을 측정한 뒤 신호를 아날로그-디지털 변환 회로를 통하여 8bit의 값으로 나타내어, 입자들의 Spectrum을 측정하게 된다. 크기와 소비전력이 적음에도 검출성능이 우수하기 때문에 이 시스템은 향후 우주탐사 시스템에 있어 매우 중요한 역할을 수행 할 것으로 생각한다.

  • PDF

Development of Signal Processing Modules for Double-sided Silicon Strip Detector of Gamma Vertex Imaging for Proton Beam Dose Verification (양성자 빔 선량 분포 검증을 위한 감마 꼭지점 영상 장치의 양면 실리콘 스트립 검출기 신호처리 모듈 개발)

  • Lee, Han Rim;Park, Jong Hoon;Kim, Jae Hyeon;Jung, Won Gyun;Kim, Chan Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.2
    • /
    • pp.81-88
    • /
    • 2014
  • Recently, a new imaging method, gamma vertex imaging (GVI), was proposed for the verification of in-vivo proton dose distribution. In GVI, the vertices of prompt gammas generated by proton induced nuclear interaction were determined by tracking the Compton-recoiled electrons. The GVI system is composed of a beryllium electron converter for converting gamma to electron, two double-sided silicon strip detectors (DSSDs) for the electron tracking, and a scintillation detector for the energy determination of the electron. In the present study, the modules of a charge sensitive preamplifier (CSP) and a shaping amplifier for the analog signal processing of DSSD were developed and the performances were evaluated by comparing the energy resolutions with those of the commercial products. Based on the results, it was confirmed that the energy resolution of the developed CSP module was a little lower than that of the CR-113 (Cremat, Inc., MA), and the resolution of the shaping amplifier was similar to that of the CR-200 (Cremat, Inc., MA). The value of $V_{rms}$ representing the magnitude of noise of the developed system was estimated as 6.48 keV and it was confirmed that the trajectory of the electron can be measured by the developed system considering the minimum energy deposition ( > ~51 keV) of Compton-recoiled electron in 145-${\mu}m$-thick DSSD.

Capacitive Readout Circuit for Tri-axes Microaccelerometer with Sub-fF Offset Calibration

  • Ouh, Hyun Kyu;Choi, Jungryoul;Lee, Jungwoo;Han, Sangyun;Kim, Sungwook;Seo, Jindeok;Lim, Kyomuk;Seok, Changho;Lim, Seunghyun;Kim, Hyunho;Ko, Hyoungho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.83-91
    • /
    • 2014
  • This paper presents a capacitive readout circuit for tri-axes microaccelerometer with sub-fF offset calibration capability. A charge sensitive amplifier (CSA) with correlated double sampling (CDS) and digital to equivalent capacitance converter (DECC) is proposed. The DECC is implemented using 10-bit DAC, charge transfer switches, and a charge-storing capacitor. The DECC circuit can realize the equivalent capacitance of sub-fF range with a smaller area and higher accuracy than previous offset cancelling circuit using series-connected capacitor arrays. The readout circuit and MEMS sensing element are integrated in a single package. The supply voltage and the current consumption of analog blocks are 3.3 V and $230{\mu}A$, respectively. The sensitivities of tri-axes are measured to be 3.87 mg/LSB, 3.87 mg/LSB and 3.90 mg/LSB, respectively. The offset calibration which is controlled by 10-bit DECC has a resolution of 12.4 LSB per step with high linearity. The noise levels of tri-axes are $349{\mu}g$/${\sqrt}$Hz, $341{\mu}g$/${\sqrt}$Hz and $411{\mu}g$/${\sqrt}$Hz, respectively.

SENSITIVITY ANALYSIS TO EVALUATE THE TRANSPORT PROPERTIES OF CdZnTe DETECTORS USING ALPHA PARTICLES AND LOW-ENERGY GAMMA-RAYS

  • Kim, Kyung-O;Ahn, Woo-Sang;Kwon, Tae-Je;Kim, Soon-Young;Kim, Jong-Kyung;Ha, Jang-Ho
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.567-572
    • /
    • 2011
  • A sensitivity analysis of the methods used to evaluate the transport properties of a CdZnTe detector was performed using two different radiations (${\alpha}$ particle and gamma-ray) emitted from an $^{241}Am$ source. The mobility-lifetime products of the electron-hole pair in a planar CZT detector ($5{\times}5{\times}2\;mm^3$) were determined by fitting the peak position as a function of biased voltage data to the Hecht equation. To verify the accuracy of these products derived from ${\alpha}$ particles and low-energy gamma-rays, an energy spectrum considering the transport property of the CZT detector was simulated through a combination of the deposited energy and the charge collection efficiency at a specific position. It was found that the shaping time of the amplifier module significantly affects the determination of the (${\mu}{\tau}$) products; the ${\alpha}$ particle method was stabilized with an increase in the shaping time and was less sensitive to this change compared to when the gamma-ray method was used. In the case of the simulated energy spectrum with transport properties evaluated by the ${\alpha}$ particle method, the peak position and tail were slightly different from the measured result, whereas the energy spectrum derived from the low-energy gamma-ray was in good agreement with the experimental results. From these results, it was confirmed that low-energy gamma-rays are more useful when seeking to obtain the transport properties of carriers than ${\alpha}$ particles because the methods that use gamma-rays are less influenced by the surface condition of the CZT detector. Furthermore, the analysis system employed in this study, which was configured by a combination of Monte Carlo simulation and the Hecht model, is expected to be highly applicable to the study of the characteristics of CZT detectors.

Development and Performance Test of Preamplifier and Amplifier for Gamma Probe (감마프로브용 전단증폭기와 주증폭기의 개발과 성능 평가)

  • Bong, Jung-Kyun;Kim, Hee-Joung;Lee, Jong-Doo;Kwon, Soo-Il
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.1
    • /
    • pp.100-109
    • /
    • 1999
  • Purpose: Preamplifier and amplifier are very important parts for developing a portable counting or imaging gamma probe. They can be used for analyzing pulses containing energy and position information for the emitted radiations. The commercial Nuclear Instrument Modules (NIMs) can be used for processing these pulses. However, it may be improper to use NIMs in developing a portable gamma probe, because of its size and high price. The purpose of this study was to develop both preamplifier and amplifier and measure their performance characteristics. Materials and Methods: The preamplifier and amplifier were designed as a charge sensitive device and a capacitor resistor-resistor capacitor (CR-RC) electronic circuit, respectively, and they were mounted on a print circuit board (PCB). We acquired and analyzed energy spectra for Tc-99m and Cs-137 using both PCB and NIMs. Multichannel analyzer (Accuspec/A, Canberra Industries Inc., Meriden Connecticut, U.S.A) and scintillation detectors (EP-047(Bicron Saint-Gobain/Norton Industrial EP-047 (Ceramics Co., Ohio, U.S.A) with $2"{\times}2"$ NaI(T1) crystal and R1535 (Hamamatsu Photonics K.K., Electron Tube Center, Shizuoka-ken, Japan) with $1"{\times}1"$ NaI(T1) crystal were used for acquiring the energy spectra. Results: Using PCB, energy resolutions of EP-047 detectors for Tc-99m and Cs-137 were 12.92% and 5.01%, respectively, whereas R1535 showed 13.75% and 5.19% of energy resolution. Using the NIM devices, energy resolutions of EP-047 detector for Tc-99m and Cs-137 were measured as 14.6% and 7.58%, respectively. However, reliable energy spectrum of R1535 detector could not be acquired, since its photomultiplier tube (PMT) requires a specific type of preamplifier. Conclusion: We developed a special preamplifier and amplifier suitable for a small sized gamma probe that showed good energy resolutions independent of PMT types. The results indicate that the PCB can be used in developing both counting and imaging gamma probe.

  • PDF

Design of Single Power CMOS Beta Ray Sensor Reducing Capacitive Coupling Noise (커패시터 커플링 노이즈를 줄인 단일 전원 CMOS 베타선 센서 회로 설계)

  • Jin, HongZhou;Cha, JinSol;Hwang, ChangYoon;Lee, DongHyeon;Salman, R.M.;Park, Kyunghwan;Kim, Jongbum;Ha, PanBong;Kim, YoungHee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.4
    • /
    • pp.338-347
    • /
    • 2021
  • In this paper, the beta-ray sensor circuit used in the true random number generator was designed using DB HiTek's 0.18㎛ CMOS process. The CSA circuit proposed a circuit having a function of selecting a PMOS feedback resistor and an NMOS feedback resistor, and a function of selecting a feedback capacitor of 50fF and 100fF. And for the pulse shaper circuit, a CR-RC2 pulse shaper circuit using a non-inverting amplifier was used. Since the OPAMP circuit used in this paper uses single power instead of dual power, we proposed a circuit in which the resistor of the CR circuit and one node of the capacitor of the RC circuit are connected to VCOM instead of GND. And since the output signal of the pulse shaper does not increase monotonically, even if the output signal of the comparator circuit generates multiple consecutive pulses, the monostable multivibrator circuit is used to prevent signal distortion. In addition, the CSA input terminal, VIN, and the beta-ray sensor output terminal are placed on the top and bottom of the silicon chip to reduce capacitive coupling noise between PCB traces.

A Study on the Design of a Beta Ray Sensor for True Random Number Generators (진성난수 생성기를 위한 베타선 센서 설계에 관한 연구)

  • Kim, Young-Hee;Jin, HongZhou;Park, Kyunghwan;Kim, Jongbum;Ha, Pan-Bong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.6
    • /
    • pp.619-628
    • /
    • 2019
  • In this paper, we designed a beta ray sensor for a true random number generator. Instead of biasing the gate of the PMOS feedback transistor to a DC voltage, the current flowing through the PMOS feedback transistor is mirrored through a current bias circuit designed to be insensitive to PVT fluctuations, thereby minimizing fluctuations in the signal voltage of the CSA. In addition, by using the constant current supplied by the BGR (Bandgap Reference) circuit, the signal voltage is charged to the VCOM voltage level, thereby reducing the change in charge time to enable high-speed sensing. The beta ray sensor designed with 0.18㎛ CMOS process shows that the minimum signal voltage and maximum signal voltage of the CSA circuit which are resulted from corner simulation are 205mV and 303mV, respectively. and the minimum and maximum widths of the pulses generated by comparing the output signal through the pulse shaper with the threshold voltage (VTHR) voltage of the comparator, were 0.592㎲ and 1.247㎲, respectively. resulting in high-speed detection of 100kHz. Thus, it is designed to count up to 100 kilo pulses per second.