• Title/Summary/Keyword: charge modulation

Search Result 93, Processing Time 0.034 seconds

A Modified Charge Balancing Scheme for Cascaded H-Bridge Multilevel Inverter

  • Raj, Nithin;G, Jagadanand;George, Saly
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2067-2075
    • /
    • 2016
  • Cascaded H-bridge multilevel inverters are currently used because it enables the integration of various sources, such as batteries, ultracapacitors, photovoltaic array and fuel cells in a single system. Conventional modulation schemes for multilevel inverters have concentrated mainly on the generation of a low harmonic output voltage, which results in less effective utilization of connected sources. Less effective utilization leads to a difference in the charging/discharging of sources, causing unsteady voltages over a long period of operation and a reduction in the lifetime of the sources. Hence, a charge balance control scheme has to be incorporated along with the modulation scheme to overcome these issues. In this paper, a new approach for charge balancing in symmetric cascaded H-bridge multilevel inverter that enables almost 100% charge balancing of sources is presented. The proposed method achieves charge balancing without any additional stages or complex circuit or considerable computational requirement. The validity of the proposed method is verified through simulation and experiments.

Photorefractive Performance of Poly[methyl-3-(9-carbazolyl) propylsiloxane] Based Composites Sensitized with Poly(3-hexylthiophene) in a 0.2-1wt % Range

  • Oh, Jin-Woo;Kim, Nak-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.41-46
    • /
    • 2010
  • In this work, we report on the characterization of six low-$T_g$ poly[methyl-3-(9-carbazolyl) propylsiloxane] based photorefractive (PR) composites sensitized with poly(3-hexylthiophene) (P3HT) in different concentrations, ranging from 0.2 to 1 wt %. At 632.8 nm, photoconductivity, space charge field, refractive index modulation, and grating buildup time were measured versus external electric field. The photoconductivity was strongly dependent on the visible light absorption and mobility. The magnitude of space charge field was affected by the conductivity contrast $\sigma_{ph}/(\sigma_{ph}+\sigma_d)$. The refractive index modulation increased with the magnitude of space charge field and the PR grating buildup speed increased with the photoconductivity.

Evaluation of color CRT monitor by MTFA (MTFA에 의한 칼라 CRT의 화질 평가)

  • 김태희
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.3
    • /
    • pp.205-211
    • /
    • 1998
  • The MTF(modulation transfer function) measuring system with a linear CCD(charge coupled-device) was constructed to cvaluate a color CRT(catode ray tube). The measured MTF values were corrected by considering the spectral response and the pixel sizes of CCD. The effects of a spot size, video bandwidth, pitch of shadow mask holes, display luminance, and ambient illumination on image quality were studied. The uniformity of resolution and the contrast Ioss by ambient light of the color CRT monitor were measured, and the results were analyzed by MTFA(modulation threshold area).

  • PDF

Quantum modulation of the channel charge and distributed capacitance of double gated nanosize FETs

  • Gasparyan, Ferdinand V.;Aroutiounian, Vladimir M.
    • Advances in nano research
    • /
    • v.3 no.1
    • /
    • pp.49-54
    • /
    • 2015
  • The structure represents symmetrical metal electrode (gate 1) - front $SiO_2$ layer - n-Si nanowire FET - buried $SiO_2$ layer - metal electrode (gate 2). At the symmetrical gate voltages high conductive regions near the gate 1 - front $SiO_2$ and gate 2 - buried $SiO_2$ interfaces correspondingly, and low conductive region in the central region of the NW are formed. Possibilities of applications of nanosize FETs at the deep inversion and depletion as a distributed capacitance are demonstrated. Capacity density is an order to ${\sim}{\mu}F/cm^2$. The charge density, it distribution and capacity value in the nanowire can be controlled by a small changes in the gate voltages. at the non-symmetrical gate voltages high conductive regions will move to corresponding interfaces and low conductive region will modulate non-symmetrically. In this case source-drain current of the FET will redistributed and change current way. This gives opportunity to investigate surface and bulk transport processes in the nanosize inversion channel.

Charge Balance Control Methods for a Class of Fundamental Frequency Modulated Asymmetric Cascaded Multilevel Inverters

  • Babaei, Ebrahim
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.811-818
    • /
    • 2011
  • Modulation strategies for multilevel inverters have typically focused on synthesizing a desired set of sinusoidal voltage waveforms using a fixed number of dc voltage sources. This makes the average power drawn from different dc voltage sources unequal and time varying. Therefore, the dc voltage sources are unregulated and require that corrective control action be incorporated. In this paper, first two new selections are proposed for determining the dc voltage sources values for asymmetric cascaded multilevel inverters. Then two modulation strategies are proposed for the dc power balancing of these types of multilevel inverters. Using the charge balance control methods, the power drawn from all of the dc sources are balanced except for the dc source used in the first H-bridge. The proposed control methods are validated by simulation and experimental results on a single-phase 21-level inverter.

Intermode Space Charge Fields in Photorefractive Material with Two Impurities for Volume Holographic Interconnections (두 종류의 불순물을 가진 광굴절 물질의 체적 홀로그램 광연결에서 생기는 모드간 공간 전하 필드)

  • Hwang, Byeong-Joon;Lee, Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.666-669
    • /
    • 1993
  • The space charge fields, including intermode apace charge fields in photorefractive material with two impurities are obtained for the small light intensity at large modulation depth, and their implication of high-capacity volume holographic interconnection are presented. In the following data regions the effect of intermode space charge fields are suppresed and the criteria for optimal implementation of volume holographic interconnections are satisfied.

  • PDF

Error-Correcting 7/9 Modulation Codes For Holographic Data Storage

  • Lee, Kyoungoh;Kim, Byungsun;Lee, Jaejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.2
    • /
    • pp.86-91
    • /
    • 2014
  • Holographic data storage (HDS) has a number of advantages, including a high transmission rate through the use of a charge coupled device array for reading two-dimensional (2D) pixel image data, and a high density capacity. HDS also has disadvantages, including 2d intersymbol interference by neighboring pixels and interpage interference by multiple pages stored in the same holographic volume. These problems can be eliminated by modulation codes. We propose a 7/9 error-correcting modulation code that exploits a Viterbi-trellis algorithm and has a code rate larger (about 0.778) than that of the conventional 6/8 balanced modulation code. We show improved performance of the bit error rate with the proposed scheme compared to that of the simple 7/9 code without the trellis scheme and the 6/8 balanced modulation code.

Observation of the Spatiotemporal Variation of Wall Charge Distribution during Reset Period in an ac POP cell

  • Jeong, Dong-Cheol;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.756-759
    • /
    • 2003
  • We measure the spatiotemporal wall charge distributions on sustain and address electrodes during reset period in an ac PDP cell using the longitudinal electro-optic amplitude modulation method. We apply several reset waveforms like as ramp, exponentially growing and high voltage pulse, and compare the wall charge characteristics on address electrode as well as sustain electrodes for each reset waveforms.

  • PDF

High-Efficiency Full-Bridge DC-DC Converter with Current-Doubler Rectifier with Asymmetric Pulse-Width Modulation (비대칭 펄스 폭 변조 방식의 배전류 정류기 회로를 적용한 고효율 풀-브릿지 DC-DC 컨버터)

  • Yang, Min-Kwon;Choi, Woo-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.3
    • /
    • pp.280-289
    • /
    • 2015
  • A high-efficiency full-bridge DC-DC converter with a current-doubler rectifier and an asymmetric pulse-width modulation is proposed. Through the asymmetric pulse-width modulation, the proposed converter achieves zero-voltage switching of power switches without the circulating currents. The proposed converter reduces the output current ripple through the current-doubler rectifier. A control strategy is suggested for the proposed converter to charge battery banks. A constant current and constant voltage charging is performed. The proposed converter achieved a higher efficiency compared with the conventional full-bridge DC-DC converter with a phase-shift modulation. The performance of the proposed converter is evaluated by the experimental results for a 1.0 kW prototype circuit.

Two-Dimensional 8/9 Error Correcting Modulation Code

  • Lee, Kyoungoh;Kim, Byungsun;Lee, Jaejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.5
    • /
    • pp.215-219
    • /
    • 2014
  • In holographic data storage (HDS), a high transmission rate is accomplished through the use of a charge coupled device array for reading two-dimensional (2D) pixel image data. Although HDS has many advantages in terms of storage capacity and data transmission rates, it also features problems, such as 2D intersymbol interference (ISI) by neighboring pixels and interpage interference (IPI) by multiple images stored in the same holographic volume. Modulation codes can be used to remove these problems. We introduce a 2D 8/9 error-correcting modulation code. The proposed modulation code exploits the trellis-coded modulation scheme, and the code rate is larger (about 0.889) than that of the conventional 6/8 balanced modulation code (an increase of approximately 13.9%). The performance of the bit error rate (BER) with the proposed scheme was improved compared with that of the 6/8 balanced modulation code and the simple 8/9 code without the trellis scheme.