• Title/Summary/Keyword: charge centre

Search Result 43, Processing Time 0.024 seconds

Potential Energy Surfaces for the Reaction Al + O2→ AlO + O

  • Ledentu, Vincent;Rahmouni, Ali;Jeung, Gwang-Hi;Lee, Yoon-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.11
    • /
    • pp.1645-1647
    • /
    • 2004
  • Potential energy surfaces for the reaction Al + $O_2{\to}$AlO + O have been calculated with the multireference configuration interaction (MRCI) method using molecular orbitals derived from the complete active space selfconsistent field (CASSCF) calculations. The end-on geometry is the most favourable for the reaction to take place. The small reaction barrier in the present calculation (0.11 eV) is probably an artefact related to the ionicneutral avoided crossing. The charge analysis implies that the title oxidation reaction occurs through a harpooning mechanism. Along the potential energy surface of the reaction, there are two stable intermediates of $AlO_2(C_{{\infty}v}$ and $C_{2v}$) at least 2.74 eV below the energy of reactants. The calculated enthalpy of the reaction (-0.07 eV) is in excellent agreement with the experimental value (-0.155 eV) in part due to the fortuitous cancellation of errors in AlO and $O_2$ calculations.

The Effectiveness of a mHealth Program Using Wearable Devices and Health Coaching among Bus Drivers for Promoting Physical Activity

  • Ha, Yeongmi;Lee, Sang-Ho;Lee, Suyeon;Chae, Yeojoo
    • Research in Community and Public Health Nursing
    • /
    • v.33 no.3
    • /
    • pp.332-339
    • /
    • 2022
  • Purpose: Bus drivers are at high risk of chronic diseases due to risk factors associated with poor diet, physical inactivity, high levels of sedentary behaviors, and unfavorable working environments. This study developed a mHealth program for bus drivers, and examined the effectiveness of a mHealth program for promoting physical activity among bus drivers using wearable devices and health coaching. Methods: Forty-seven workers from two bus companies were allocated to the experimental group and the control group. Participants were asked to wear a wearable device (Fitbit Charge HR) during waking hours for a day. Participants in the experimental group were provided with a Fitbit, weekly face-to-face health coaching, a mHealth workbook, and text and photo messaging for 12 weeks. The control group only received a Fitbit. Results: By week 12, there were significant differences between the experimental and control groups in exercise self-efficacy (p<.015) and daily walking steps (p<.001). Conclusion: The findings have demonstrated that the mHealth program using wearable devices and health coaching is effective for bus drivers for promoting physical activity. Based on our findings, it is recommended to encourage the mHealth program using wearable devices and health coaching for bus drivers' wellness.

Bio-Derived Poly(${\gamma}$-Glutamic Acid) Nanogels as Controlled Anticancer Drug Delivery Carriers

  • Bae, Hee Ho;Cho, Mi Young;Hong, Ji Hyeon;Poo, Haryoung;Sung, Moon-Hee;Lim, Yong Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1782-1789
    • /
    • 2012
  • We have developed a novel type of polymer nanogel loaded with anticancer drug based on bio-derived poly(${\gamma}$-glutamic acid) (${\gamma}$-PGA). ${\gamma}$-PGA is a highly anionic polymer that is synthesized naturally by microbial species, most prominently in various bacilli, and has been shown to have excellent biocompatibility. Thiolated ${\gamma}$-PGA was synthesized by covalent coupling between the carboxyl groups of ${\gamma}$-PGA and the primary amine group of cysteamine. Doxorubicin (Dox)-loaded ${\gamma}$-PGA nanogels were fabricated using the following steps: (1) an ionic nanocomplex was formed between thiolated ${\gamma}$-PGA as the negative charge component, and Dox as the positive charge component; (2) addition of poly(ethylene glycol) (PEG) induced hydrogen-bond interactions between thiol groups of thiolated ${\gamma}$-PGA and hydroxyl groups of PEG, resulting in the nanocomplex; and (3) disulfide crosslinked ${\gamma}$-PGA nanogels were fabricated by ultrasonication. The average size and surface charge of Dox-loaded disulfide cross-linked ${\gamma}$-PGA nanogels in aqueous solution were $136.3{\pm}37.6$ nm and $-32.5{\pm}5.3$ mV, respectively. The loading amount of Dox was approximately 38.7 ${\mu}g$ per mg of ${\gamma}$-PGA nanogel. The Dox-loaded disulfide cross-linked ${\gamma}$-PGA nanogels showed controlled drug release behavior in the presence of reducing agents, glutathione (GSH) (1-10 mM). Through fluorescence microscopy and FACS, the cellular uptake of ${\gamma}$-PGA nanogels into breast cancer cells (MCF-7) was analyzed. The cytotoxic effect was evaluated using the MTT assay and was determined to be dependent on both the concentration and treatment time of ${\gamma}$-PGA nanogels. The bio-derived ${\gamma}$-PGA nanogels are expected to be a well-designed delivery carrier for controlled drug delivery applications.

X-RAY ASTRONOMY EXPERIMENT ON THE INDIAN SATELLITE IRS-P3

  • AGRAWAL P. C.;PAUL B.;RAO A. R.;SHAH M. R.;MCKERJEE K.;VARIA M. N.;YADAV J. S.;DEDHIA D. K.;MALKAR J. P.;SHAH P.;DAMLE S. V.;MARAR T. M. K.;SEETHA S.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.429-432
    • /
    • 1996
  • An x-ray astronomy experiment consisting of three collimated proportional counters and an X-ray Sky Monitor (XSM) was flown aboard the Indian Satellite IRS-P3 launched on March 21, 1996 from SHAR range in India. The Satellite is in a circular orbit of 830 km altitude with an orbital inclination of $98^{\circ}$ and has three axis stabilized pointing capability. Each pointed-mode Proportional Counter (PPC) is a multilayer, multianode unit filled with P-10 gas ($90\%$ Ar + $10\%\;CH_4$) at 800 torr and having an aluminized mylar window of 25 micron thickness. The three PPCs are identical and have a field of view of $2^{\circ}{\times}2^{\circ}$ defined by silver coated aluminium honeycomb collimators. The total effective area of the three PPCs is about 1200 $cm^2$. The PPCs are sensitive in 2-20 keV band. The XSM consists of a pin-hole of 1 $cm^2$ area placed 16 cm above the anode plane of a 32 cm$\times$32 cm position sensitive proportional counter sensitive in 3-8 keV interval. The position of the x-ray events is determined by charge division technique using nichrome wires as anodes. The principal objective of this experiment is to carry out timing studies of x-ray pulsars, x-ray binaries and other rapidly varying x-ray sources. The XSM will be used to detect transient x-ray sources and monitor intensity of bright x-ray binaries. Observations of black-hole binary Cyg X-1 and few other binary sources were carried out in early May and July-August 1996 period. Details of the x-ray detector characteristics are presented and preliminary results from the observations are discussed.

  • PDF

MnCo2S4/CoS2 Electrode for Ultrahigh Areal Capacitance

  • Pujari, Rahul B.;Lokhande, C.D.;Lee, Dong-Weon
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.215-219
    • /
    • 2020
  • MnCo2S4/CoS2 electrode with highly accessible electroactive sites is prepared using the hydrothermal method. The electrode exhibits an areal capacitance of 0.75 Fcm-2 at 6 mAcm-2 in 1 M KOH. The capacitance is further increased to 2.06 Fcm-2 by adding K3Fe(CN)6 and K4Fe(CN)6 (a redox couple) to KOH. This increment is associated with the redox-active properties of cobalt and manganese transition metals, as well as the ion pair of [Fe(CN)6]-3/[Fe(CN)6]-4. The capacitance retention of the MnCo2S4/CoS2 electrode is 87.5% for successive 4000 charge-discharge cycles at 10 mAcm-2 in a composite electrolyte system of KOH and ferri/ferrocyanide. The capacitance enhancement is supported by the lowest equivalent series resistance (0.62 Ωcm-2) of MnCo2S4/CoS2 in the presence of redox additive couple compared with the bare KOH electrolyte.

Free-standing Three Dimensional Graphene Incorporated with Gold Nanoparticles as Novel Binder-free Electrochemical Sensor for Enhanced Glucose Detection

  • Bui, Quoc Bao;Nguyen, Dang Mao;Nguyen, Thi Mai Loan;Lee, Ku Kwac;Kim, Hong Gun;Ko, Sang Cheol;Jeong, Hun
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.229-237
    • /
    • 2018
  • The electrochemical sensing performance of metal-graphene hybrid based sensor may be significantly decreased due to the dissolution and aggregation of metal catalyst during operation. For the first time, we developed a novel large-area high quality three dimensional graphene foam-incorporated gold nanoparticles (3D-GF@Au) via chemical vapor deposition method and employed as free-standing electrocatalysis for non-enzymatic electrochemical glucose detection. 3D-GF@Au based sensor is capable to detect glucose with a wide linear detection range of $2.5{\mu}M$ to 11.6 mM, remarkable low detection limit of $1{\mu}M$, high selectivity, and good stability. This was resulted from enhanced electrochemical active sites and charge transfer possibility due to the stable and uniform distribution of Au NPs along with the enhanced interactions between Au and GF. The obtained results indicated that 3D-GF@Au hybrid can be expected as a high quality candidate for non-enzymatic glucose sensor application.

Integration of Tobacco Control in Masters of Public Health Curricula of India

  • Yadav, Aman;Goel, Sonu;Sharma, Vijay Lakshmi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5611-5615
    • /
    • 2014
  • Context: Tobacco is the single largest cause of preventable death among adults globally, as it is in India. Despite this alarming situation, there is very minimal inclusion of tobacco in formal education systems, including the medical discipline, in India. Aims: The present study analyzed the extent of integration of tobacco control related content in Masters of Public Health (MPH) curricula of various institutes in India. Materials and Methods: This cross-sectional study was conducted during January 2011 to May 2011 in all colleges of the country offering a MPH course. The colleges were enlisted using various internet search engines (Google Scholar, Pubmed, Medline), other published literature and snowball technique. A 50 items semi-structured questionnaire was designed, posted and e-mailed (followed by hard copy) to the Person-In-Charge of the MPH program. Statistical Analysis: Descriptive statistics were used to profile the tobacco control content in respective institutions. All data entry and analysis was conducted using SPSS (version 16) for windows. Results: The duration of the MPH course was two years in all institutes and had accreditation with some affiliated body. Tobacco related diseases were covered under 'non communicable diseases' section by every institute. However, a mere 41.4% of institute's had faculty who had received specialized training in tobacco control. More coverage was given to health risks and effects of smoking as compared to cessation interventions (5 A's), symptoms of withdrawal and pharmacological treatments. Only 25% of institutes were in process of introducing tobacco courses into their curricula. Lack of expertise and administrative barriers were cited as perceived major problems in inclusion of tobacco control in MPH curricula. Conclusions: It can be concluded that tobacco control is not receiving adequate attention in public health curricula in India. There is a need for coordinated efforts in the area of tobacco control so as to reduce morbidity and mortality from tobacco induced diseases.

Performance Improvement of All Solution Processable Organic Thin Film Transistors by Newly Approached High Vacuum Seasoning

  • Kim, Dong-Woo;Kim, Hyoung-Jin;Lee, Young-Uk;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.470-470
    • /
    • 2012
  • Organic thin film transistors (OTFTs) backplane constitute the active elements in new generations of plastic electronic devices for flexible display. The overall OTFTs performance is largely depended on the properties and quality of each layers of device material. In solution based process of organic semiconductors (OSCs), the interface state is most impediments to preferable performance. Generally, a threshold voltage (Vth) shift is usually exhibited when organic gate insulators (OGIs) are exposed in an ambient air condition. This phenomenon was caused by the absorbed polar components (i.e. oxygen and moisture) on the interface between OGIs and Soluble OSCs during the jetting process. For eliminating the polar component at the interface of OGI, the role of high vacuum seasoning on an OGI for all solution processable OTFTs were studied. Poly 4-vinly phenols (PVPs) were the material chosen as the organic gate dielectric, with a weakness in ambient air. The high vacuum seasoning of PVP's surface showed improved performance from non-seasoning TFT; a $V_{th}$, a ${\mu}_{fe}$ and a interface charge trap density from -8V, $0.018cm^2V^{-1}s^{-1}$, $1.12{\times}10^{-12}(cm^2eV)^{-1}$ to -4.02 V, $0.021cm^2V^{-1}s^{-1}$, $6.62{\times}10^{-11}(cm^2eV)^{-1}$. These results of OTFT device show that polar components were well eliminated by the high vacuum seasoning processes.

  • PDF

A vision-based system for dynamic displacement measurement of long-span bridges: algorithm and verification

  • Ye, X.W.;Ni, Y.Q.;Wai, T.T.;Wong, K.Y.;Zhang, X.M.;Xu, F.
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.363-379
    • /
    • 2013
  • Dynamic displacement of structures is an important index for in-service structural condition and behavior assessment, but accurate measurement of structural displacement for large-scale civil structures such as long-span bridges still remains as a challenging task. In this paper, a vision-based dynamic displacement measurement system with the use of digital image processing technology is developed, which is featured by its distinctive characteristics in non-contact, long-distance, and high-precision structural displacement measurement. The hardware of this system is mainly composed of a high-resolution industrial CCD (charge-coupled-device) digital camera and an extended-range zoom lens. Through continuously tracing and identifying a target on the structure, the structural displacement is derived through cross-correlation analysis between the predefined pattern and the captured digital images with the aid of a pattern matching algorithm. To validate the developed system, MTS tests of sinusoidal motions under different vibration frequencies and amplitudes and shaking table tests with different excitations (the El-Centro earthquake wave and a sinusoidal motion) are carried out. Additionally, in-situ verification experiments are performed to measure the mid-span vertical displacement of the suspension Tsing Ma Bridge in the operational condition and the cable-stayed Stonecutters Bridge during loading tests. The obtained results show that the developed system exhibits an excellent capability in real-time measurement of structural displacement and can serve as a good complement to the traditional sensors.

Evaluating internal exposure due to intake of 131I at a nuclear medicine centre of Dhaka using bioassay methods

  • Sharmin Jahan;Jannatul Ferdous;Md Mahidul Haque Prodhan;Ferdoushi Begum
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2050-2056
    • /
    • 2024
  • Handling of radioisotopes may cause external and internal contamination to occupational workers while using radiation for medical purposes. This research aims to monitor the internal hazard of occupational workers who handle 131I. Two methods are used: in vivo or direct method and in vitro or indirect method. The in vivo or direct method was performed by assessing thyroid intake with a thyroid uptake monitoring machine. The in vitro or indirect method was performed by assessing urine samples with the help of a gamma-ray spectroscopy practice using a High-Purity Germanium (HPGe) Detector. In this study, fifty-nine thyroid counts and fifty-nine urine samples were collected from seven occupational workers who were in charge of 131I at the National Institute of Nuclear Medicine and Allied Sciences (NINMAS), Dhaka. The result showed that the average annual effective dose of seven workforces from thyroid counts were 0.0208 mSv/y, 0.0180 mSv/y, 0.0135 mSv/y, 0.0169 m Sv/y, 0.0072 mSv/y, 0.0181 mSv/y, 0.0164 mSv/y and in urine samples 0.0832 mSv/y, 0.0770 mSv/y, 0.0732 mSv/y, 0.0693 mSv/y, 0.0715 mSv/y, 0.0662 mSv/y, 0.0708 mSv/y.The total annual effective dose (in vivo and in vitro method) was found among seven workers in average 0.1039 mSv/y, 0.0950 mSv/y, 0.0868 mSv/y, 0.0862 mSv/y, 0.0787 mSv/y, 0.0843 mSv/y, 0.0872 mSv/y. Following the rules of the International Commission on Radiological Protection (ICRP), the annual limit of effective dose for occupational exposure is 20 mSv per year and the finding values from this research work are lesser than this safety boundary.