• Title/Summary/Keyword: charge carrier balance

Search Result 10, Processing Time 0.027 seconds

Signal Shapes from a Closed-ended Coaxial HPGe Detector

  • Park, H. D.
    • Nuclear Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.451-458
    • /
    • 1997
  • Signal shapes from a closed-ended coaxial HPGe detector are investigated by numerical methods. The detector used in this study has a volume of 72 ㎤ with relative efficiency of 15%. The electric field and potential distributions in the detector are determined by solving the Poisson equation at the depletion and operating bias. Hence the time dependent signal shapes induced on the electrode are obtained from the energy balance consideration and tv solving the equation of motion for the charge carriers. For various initial positions of a charge carrier pair, the collection times of induced charge vary in the range of 70 - 404 nsec.

  • PDF

EML doping 위치에 따른 적색 인광 OLED 특성 변화 연구

  • Hyeon, Yeong-Hwan;Choe, Byeong-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.230.1-230.1
    • /
    • 2016
  • 본 연구에서는 Host-Dopant system 기반 적색 인광 OLED의 Emitting layer(EML)에서 doping 위치에 따른 특성 변화를 분석하였다. EML은 host 물질로 60 nm 두께의 CBP를 사용하고, 적색 발광을 위해 10 %의 $Ir(btp)_2$를 CBP의 Front, Middle, Back side에 각각 20 nm씩 doping하였다. 본 구조의 적색 인광 OLED는 current density, luminance, efficiency, EL spectrum 등을 통해 전기적, 광학적 특성 변화를 확인하였다. Front, Back side에 doping으로 인한 CBP의 Energy level이 3.6 eV에서 1.9 eV로 감소하여 각각 HTL/EML, EML/HBL의 경계에 carrier direct injection이 활성화 되었고, 이로 인한 charge balance의 저하를 확인하였다. EL spectrum결과 각 소자는 CBP의 618 nm 파장 외에도, 추가적으로 TPBi의 398 nm, NPB의 456 nm의 파장을 보였다. 이를 통해 doping 위치에 따라 exciton이 형성되는 recombination zone이 이동하고 있음을 확인하였고, Front side는 6 V의 인가전압에서는 발광 파장이 398 nm에서 높은 값을 보이나 8 V, 10 V, 12 V에서 618 nm에서 높은 값을 보이는 것으로 인가전압에 의해 recombination zone이 HTL쪽으로 이동되는 것 또한 확인하였다.

  • PDF

Effect of Stepwise Doping on Performance of Green Phosphorescent Organic Light-Emitting Diodes (단계적 도핑구조에 따른 녹색 인광 유기발광 다이오드의 성능에 미치는 효과에 관한 연구)

  • Hwang, Kyo-Min;Lee, Song-Eun;Lee, Seul-Bee;Yoon, Seung-Soo;Kim, Young-Kwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • We investigated green phosphorescent organic light-emitting diodes with stepwise doping to improve efficiency roll-off and operational lifetime by efficient distribution of triplet excitons. The host material which was 4,4,N,N'-dicarbazolebiphenyl (CBP) of bipolar characteristic that can control the carrier in emitting layer (EML). When the EML devided into four parts with different doping concentration, each devices shows various efficiency roll-off and lifetime enhancement. The distribution of the carrier and excitons in the EML can be confirmed by using stepwise doping structure. The properties of device C exhibited luminous efficiency of 51.10 cd/A, external quantum efficiency of 14.88%, respectively. Lifetime has increased 73.70% compared to the reference device.

Solution-Processed Quantum-Dots Light-Emitting Diodes with PVK/PANI:PSS/PEDOT:PSS Hole Transport Layers

  • Park, Young Ran;Shin, Koo;Hong, Young Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.146-146
    • /
    • 2015
  • We report the enhanced performance of poly(N-vinylcarbozole) (PVK)/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)-based quantum-dot light-emitting diodes by inserting the polyaniline:poly (p-styrenesulfonic acid) (PANI:PSS) interlayer. The QD-LED with PANI:PSS interlayer exhibited a higher luminance and luminous current efficiency than that without PANI:PSS. Ultraviolet photoelectron spectroscopy results exhibited different electronic energy alignments of QD-LEDs with/without the PANI:PSS interlayer. By inserting the PANI:PSS interlayer, the hole-injection barrier at the QD layer/PVK interface was reduced from 1.45 to 1.23 eV via the energy level down-shift of the PVK layer. The reduced barrier height alleviated the interface carrier charging responsible for the deterioration of the current and luminance efficiency. This suggests that the insertion of PANI:PSS interlayer in QD-LEDs contributed to (i) increase the p-type conductivity and (ii) reduce the hole barrier height of QDs/PVK, which are critical factors leading to improve the efficiency of QD-LEDs.

  • PDF

EL Properties of PFV and PPV Copolymers

  • Hwang, Do-Hoon;Lee, Jong-Don;Kang, Jong-Min;Lee, Chang-Hee;Jin, Sung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.877-880
    • /
    • 2003
  • A new class of light-emitting poly(p-phenylenevinylene) (PPV) derivatives. poly(9,9-di-n-octyfluorenyl- 2,7-vinylene) (PFV) and its PPV copolymers, poly[(9,9-di-n-octylfluorenyl-2,7-vinylene)-co-(1,4-phenylenevinylene)]s [Poly(FV-co-PV)s] was synthesized through Gilch polymerization, and their light-emitting properties were investigated. The copolymers showed almost the same UV absorption and PL emission as the PFV homopolymer, regardless of copolymer composition. Interestingly, the EL spectra of these devices were similar to the PL spectra of the corresponding polymer film. However, the EL devices constructed from the poly(FV-co-PV)s showed 10 times higher efficiency than the devices constructed from the PFV homopolymer. This higher efficiency is possibly a result of better charge carrier balance in the copolymer systems due to the lower HOMO level (${\sim}5.5$ eV) of the poly(FV-co-PV)s in comparison to the PFV (${\sim}5.7$ eV).

  • PDF

Synthesis and Light-emitting Properties of Poly (fluorene) Copolymers Containing EDOT Comonomer

  • Hwang, Do-Hoon;Park, Moo-Jin;Lee, Ji-Hoon
    • Journal of Information Display
    • /
    • v.5 no.4
    • /
    • pp.12-17
    • /
    • 2004
  • A series of statistical random copolymers of dioctylfluorene (DOF) and 3,4-ethylenedioxythiophene (EDOT) were synthesized by Ni (0) mediated polymerization and their light-emitting properties were compared with poly (9,9-di-n-octylfluorene) (PDOF). The synthesized polymers were characterized using UV-vis spectroscopy, TGA, photoluminescence (PL) & electroluminescence (EL) spectroscopy and by conducting molecular weight studies. The resulting polymers were found to be thermally stable and readily soluble in organic solvents. The UV-visible absorption and PL emission spectra of the copolymers were gradually red-shifted as the fraction of EDOT in copolymers increased. Light-emitting devices were fabricated in an ITO (indium-tin oxide)/PEDOT/polymer/Ca/Al configuration. Interestingly, the EL spectra of these devices were similar to the PL spectra of the corresponding polymer film. However, the EL devices constructed from the copolymer showed more than 10 times higher efficiency level than the devices constructed from the PDOF homopolymer. This higher efficiency is possibly the result of better charge carrier balance in the copolymer systems due to the lower HOMO levels of the copolymers in comparison to that of PDOF homopolymer.

Electroluminescence Characteristics of a New Green-Emitting Phenylphenothiazine Derivative with Phenylbenzimidazole Substituent

  • Ahn, Yeonseon;Jang, Da Eun;Cha, Yong-Bum;Kim, Mansu;Ahn, Kwang-Hyun;Kim, Young Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.107-111
    • /
    • 2013
  • A new green-emitting material with donor-acceptor architecture, 3,7-bis(1'-phenylbenzimidazole-2'-yl)-10-phenylphenothiazine (BBPP) was synthesized and its thermal, optical, and electroluminescent characteristics were investigated. Organic light-emitting diodes (OLEDs) with four different multilayer structures were prepared using BBPP as an emitting layer. The optimized device with the structure of [ITO/2-TNATA (40 nm)/BBPP (30 nm)/TPBi (30 nm)/Alq3 (10 nm)/LiF (1 nm)/Al (100 nm)] exhibited efficient green emission. Enhanced charge carrier balance and electron mobility in the organic layers enabled the device to demonstrate a maximum luminance of 31,300 cd/$m^2$, a luminous efficiency of 6.83 cd/A, and an external quantum efficiency of 1.62% with the CIE 1931 chromaticity coordinates of (0.21, 0.53) at a current density of 100 mA/$cm^2$.

Highly Enhanced EL Properties of PF Copolymers with Pyrazole Derivatives (피라졸 유도체를 함유한 폴리알킬플루오렌 공중합체의 향상된 EL 특성)

  • Kang, In-Nam;Lee, Ji-Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.7
    • /
    • pp.539-544
    • /
    • 2010
  • We have synthesized new blue electroluminescent polyalkylfluorene-based copolymers [poly(F-co-Py)x:y, where x:y = 99:1 or 95:5 mole ratios] containing the hole-injecting pyrazole derivative [3,3'-(4,6-bis(octyloxy)-1,3-phenylene)bis(1,5-diphenyl-4,5-dihydro-1H-pyrazole] through Ni(0) mediated polymerization, and their electroluminescent properties were investigated. Electroluminescent (EL) devices were fabricated with ITO / PEDOT:PSS (110 nm) / copolymers or PF homopolymer (80 nm) / Ca (50 nm) / Al (200 nm) configuration. Each EL device constructed from the copolymer exhibited significantly enhanced brightness and efficiency compared with a device constructed from the PF homopolymer. The EL device constructed with poly(F-co-Py)99:1 exhibited the highest luminous efficiency and brightness (0.95 cd/A and $2,907\;cd/m^2$, respectively). The achieved luminous efficiency was an excellent result, providing almost a 4-fold improvement on the efficiency obtainable with the a PF homopolymer device. This enhanced efficiency of the copolymer devices results from their improved hole injection and more efficient charge carrier balance, which arises from the HOMO level (~5.83 eV) of the poly(F-co-Py)99:1 copolymer, which is higher than that of the PF homopolyme (~5.90 eV).

Synthesis and Characterization of Electroluminescent Conjugated Polymers Containing Sulfone Group in the Main Chain (주사슬에 설폰기를 함유하는 전기발광 공액 고분자의 합성과 특성분석)

  • Kang Min Sung;Jung Ho Kuk;Park Soo Young;Kim Jang-Joo
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.357-362
    • /
    • 2005
  • As a new class of electroluminescent (EL) polymers, PPV-based polymers containing sulfone group in the main chain were synthesized through Witting polymerization reaction to control n-conjugation length and energy levels for predictable light emission and enhanced device performance. These EL polymers showed good solubility in common organic solvents and high thermal stability with initial decomposition temperature of ca. $400^{circ}$ and glass transition temperature around $200^{circ}C$ Emission colors were tuned from green to deep blue by reducing ${\pi}$-conjugated length between sulfone groups. It was also noted from the cyclic voltammetry (CV) measurements and semiempirical calculations that sulfone group with high electron affinity effectively lowered HOMO-LUMO energy levels to enhance EL device performance.

Excimer-Based White Phosphorescent OLEDs with High Efficiency

  • Yang, Xiaohui;Wang, Zixing;Madakuni, Sijesh;Li, Jian;Jabbour, Ghassan E.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1520-1521
    • /
    • 2008
  • There are several ways to demonstrate white organic light emitting diodes (OLEDs) for displays and solid state lighting applications. Among these approaches are the stacked three primary or two complementary colors light-emitting layers, multiple-doped emissive layer, and excimer and exciplex emission [1-10]. We report on white phosphorescent excimer devices by using two light emitting materials based on platinum complexes. These devices showed a peak EQE of 15.7%, with an EQE of 14.5% (17 lm/W) at $500\;cd/m^2$, and a noticeable improvement in both the CIE coordinates (0.381, 0.401) and CRI (81). Devices with the structure ITO/PEDOT:PSS/TCTA (30 nm)/26 mCPy: 12% FPt (10 nm) /26 mCPy: 2% Pt-4 (15 nm)/BCP (40 nm)/CsF/Al [device 1], ITO/PEDOT:PSS/TCTA (30 nm)/26 mCPy: 2% Pt-4 (15 nm)/26 mCPy: 12% FPt (10 nm)/BCP (40 nm)/CsF/Al [device 2], and ITO/PEDOT:PSS/TCTA (30 nm)/26 mCPy: 2% Pt-4: 12% FPt (25 nm)/BCP (40 nm)/CsF/Al [device 3] were fabricated. In these cases, the emissive layer was either the double-layer of 26 mCPy:12% FPt and 15 nm 26 mCPy: 2% Pt-4, or the single layer of 26mCPy with simultaneous doping of Pt-4 and FPt. Device characterization indicates that the CIE coordinates/CRI of device 2 were (0.341, 0.394)/75, (0.295, 0.365)/70 at 5 V and 7 V, respectively. Significant change in EL spectra with the drive voltage was observed for device 2 indicating a shift in the carrier recombination zone, while relatively stable EL spectra was observed for device 1. This indicates a better charge trapping in Pt-4 doped layers [10]. On the other hand, device 3 having a single light-emitting layer (doped simultaneously) emitted a board spectrum combining emission from the Pt-4 monomer and FPt excimer. Moreover, excellent color stability independent of the drive voltage was observed in this case. The CIE coordinates/CRI at 4 V ($40\;cd/m^2$) and 7 V ($7100\;cd/m^2$) were (0.441, 0.421)/83 and (0.440, 0.427)/81, respectively. A balance in the EL spectra can be further obtained by lowering the doping ratio of FPt. In this regard, devices with FPt concentration of 8% (denoted as device 4) were fabricated and characterized. A shift in the CIE coordinates of device 4 from (0.441, 0.421) to (0.382, 0.401) was observed due to an increase in the emission intensity ratio of Pt-4 monomer to FPt excimer. It is worth noting that the CRI values remained above 80 for such device structure. Moreover, a noticeable stability in the EL spectra with respect to changing bias voltage was measured indicating a uniform region for exciton formation. A summary of device characteristics for all cases discussed above is shown in table 1. The forward light output in each case is approximately $500\;cd/m^2$. Other parameters listed are driving voltage (Bias), current density (J), external quantum efficiency (EQE), power efficiency (P.E.), luminous efficiency (cd/A), and CIE coordinates. To conclude, a highly efficient white phosphorescent excimer-based OLEDs made with two light-emitting platinum complexes and having a simple structure showed improved EL characteristics and color properties. The EQE of these devices at $500\;cd/m^2$ is 14.5% with a corresponding power efficiency of 17 lm/W, CIE coordinates of (0.382, 0.401), and CRI of 81.

  • PDF