• Title/Summary/Keyword: characteristics of defuzzification methods

Search Result 6, Processing Time 0.022 seconds

A STUDY ON CHARACTERISTICS OF DEFUZZYFICATION METHODS IN FUZZY CONTROL

  • 송원경;이종필;변증남
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.98-103
    • /
    • 1997
  • Defuzzification plays a great role in fuzzy control system. Defuzzification is a process which maps from a space defined over an output universe of discourse into a space of nonfuzzy(crisp) number. But, it's impossible to convert a fuzzy set into a numeric value without losing some information during defuzzification. Also it's very hard to find a number that best represents a fuzzy set. Many methods have been used for defuzzification but most of then were problem dependent. There has been no rule which guides how to select a method that is suitable to solve given problem. Here, we have investigated most widely used methods and we have analyzed their characteristics and evaluated them. D. Driankov and Mizumoto have suggested 5 criteria which the‘ideal’defuzzification method should satisfy. But, they didn't considered about control action. Output fuzzy set if not only a fuzzy set but also a sequence of control action. We suggested 4 new criteria which describe sequence of cont ol action from some experiments. In addition, we have compared each method in simple adaptive fuzzy control. COG(Center of Gravity), or COS(Center of Sums) methods were successful in fuzzy control. However, at transition region, MOM(Mean of Maxima) was best among others in adaptive fuzzy control.

  • PDF

A Neuro-Fuzzy Approach to Integration and Control of Industrial Processes:Part I

  • Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.6
    • /
    • pp.58-69
    • /
    • 1998
  • This paper introduces a novel neuro-fuzzy system based on the polynomial fuzzy neural network(PFNN) architecture. The PFNN consists of a set of if-then rules with appropriate membership functions whose parameters are optimized via a hybrid genetic algorithm. A polynomial neural network is employed in the defuzzification scheme to improve output performance and to select appropriate rules. A performance criterion for model selection, based on the Group Method of DAta Handling is defined to overcome the overfitting problem in the modeling procedure. The hybrid genetic optimization method, which combines a genetic algorithm and the Simplex method, is developed to increase performance even if the length of a chromosome is reduced. A novel coding scheme is presented to describe fuzzy systems for a dynamic search rang in th GA. For a performance assessment of the PFNN inference system, three well-known problems are used for comparison with other methods. The results of these comparisons show that the PFNN inference system outperforms the other methods while it exhibits exceptional robustness characteristics.

  • PDF

A Study on the Fuzzy Control of Series Wound Motor Drive Systems uUing Genetic Algorithms (유전알고리즘을 이용한 직류직권모터 시스템의 퍼지제어에 관한 연구)

  • 김종건;배종일;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.60-64
    • /
    • 1997
  • Designing fuzzy controller, there are difficulties that we have to determine fuzzy rules and shapes of membership functions which are usually obtained by the amount of trial-and-error or experiences from the experts. In this paper, to overcome these defects, genetic algorithms which is probabilistic search method based on genetics and evolution theory are used to determine fuzzy rules and fuzzy membership functions. We design a series compensation fuzzy controller, then determine basic structures, input-output variables, fuzzy inference methods and defuzzification methods for fuzzy controllers. We develop genetic algorithms which may search more accurate optimal solutions. For evaluating the fuzzy controller performances through experiments upon an actual system, we design the fuzzy controllers for the speed control of a DC series motor with nonlinear characteristics and show good output responses to reference inputs.

  • PDF

Estimation of Traffic Characteristics by Fuzzy Beasoning Method

  • Gung, Moon-Nam;Kwon, Yeong-Eon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.911-914
    • /
    • 1993
  • This paper makes a trial to build the model of car-following in the state of starting to stable driving on the basic of driver's knowledge that is easily characterized by linguistical cognition. There are three main steps in building the model. Firstly, each driver's rule of three testees is studied in linguistical experssion by the interview and questionary surveys that are repeated once a day for ten days. Secondly, quantification of the linguistical expression is investigated by driving experiments that includes the questionary survey to the testee in the test vehicle, and the membership functions of variables of rule are obtained. Thirdly, implicaton and composition of fuzzy inference is made by Max-Min Methods and defuzzification by gravity method. It can be said that the proposed model of car-following based on driver's knowledge is practically allpicable to the estimation of drivering of car-following on trunk roads in urban area.

  • PDF

A Suggestion of Nonlinear Fuzzy PID Controller to Improve Transient Responses of Nonlinear or Uncertain Systems

  • Kim, Jong-Hwa
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.87-100
    • /
    • 1995
  • In order to control systems which contain nonlinearities of uncertainties, control strategies must deal with the effects of them. Since most of control methods based on system mathematical models have been mainly developed focused on stability robustness against nonlinearities or uncertainties under the assumption that controlled systems are linear time invariant, they have certain amount of limitations to smartly improve the transient responses of systems disturbed by nonlinearities or uncertainties. In this paper, a nonlinear fuzzy PID control method is suggested which can stably improve the transient responses of systems disturbed by nonlinearities, as well as systems whose mathematical characteristics are not perfectly known. Although the derivation process is based on the design process similar to general fuzzy logic controller, resultant control law has analytical forms with time varying PID gains rather than linguistic forms, so that implementation using common-used versatile microprocessors cna be achieved easily and effectively in real-time control aspect.

  • PDF

Effective and Reliable Speed Control of Permanent Magnet DC (PMDC) Motor under Variable Loads

  • Tuna, Murat;Fidan, Can Bulent;Kocabey, Sureyya;Gorgulu, Sertac
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2170-2178
    • /
    • 2015
  • This paper presents the effective and reliable speed control of PMDC motors under variable loads and reference speeds. As is known DC motors are more preferred in industrial practices. This is that, the PMDC motors don’t require brush and commutator care and to increase in torque per motor depending on developments in power electronics. In this study, proportional-integral controller (PI) and fuzzy logic controller (FL) have been designed for speed control of PMDC motor. In the design of these controllers, characteristics such as minimum overrun time, response time to the load, settling time and ideal rise time have been taken into consideration for better stability performance. In this design, the best system response was searched by examining the effect of different defuzzification methods onto the fuzzy logic system response. In conclusion, it has been seen that FL controller has a better performance for variable speed-load control of PMDC motor compared to PI controller.