• 제목/요약/키워드: characteristic models

검색결과 1,016건 처리시간 0.024초

Electron transport in core-shell type fullerene nanojunction

  • Sergeyev, Daulet;Duisenova, Ainur
    • Advances in nano research
    • /
    • 제12권1호
    • /
    • pp.25-35
    • /
    • 2022
  • Within the framework of the density functional theory combined with the method of non-equilibrium Green's functions (DFT + NEGF), the features of electron transport in fullerene nanojunctions, which are «core-shell» nanoobjects made of a combination of fullerenes of different diameters C20, C80, C180, placed between gold electrodes (in a nanogap), are studied. Their transmission spectra, the density of state, current-voltage characteristics and differential conductivity are determined. It was shown that in the energy range of -0.45-0.45 eV in the transmission spectrum of the "Au-C180-Au" nanojunction appears a HOMO-LUMO gap with a width of 0.9 eV; when small-sized fullerenes C20, C80 are intercalation into the cavity C180 the gap disappears, and a series of resonant structures are observed on their spectra. It has been established that distinct Coulomb steps appear on the current-voltage characteristics of the "Au-C180-Au" nanojunction, but on the current-voltage characteristics "Au-C80@C180-Au", "Au-(C20@C80)@C180-Au" these step structures are blurred due to a decrease in Coulomb energy. An increase in the number of Coulomb features on the dI/dV spectra of core-shell fullerene nanojunctions was revealed in comparison with nanojunctions based on fullerene C60, which makes it possible to create high-speed single-electron devices on their basis. Models of single-electron transistors (SET) based on fullerene nanojunctions "Au-C180-Au", "Au-C80@C180-Au" and "Au-(C20@C80)@C180-Au" are considered. Their charge stability diagrams are analyzed and it is shown that SET based on C80@C180-, (C20@C80)@C180- nanojunctions is output from the Coulomb blockade mode with the lowest drain-to-source voltage.

Students' Performance Prediction in Higher Education Using Multi-Agent Framework Based Distributed Data Mining Approach: A Review

  • M.Nazir;A.Noraziah;M.Rahmah
    • International Journal of Computer Science & Network Security
    • /
    • 제23권10호
    • /
    • pp.135-146
    • /
    • 2023
  • An effective educational program warrants the inclusion of an innovative construction which enhances the higher education efficacy in such a way that accelerates the achievement of desired results and reduces the risk of failures. Educational Decision Support System (EDSS) has currently been a hot topic in educational systems, facilitating the pupil result monitoring and evaluation to be performed during their development. Insufficient information systems encounter trouble and hurdles in making the sufficient advantage from EDSS owing to the deficit of accuracy, incorrect analysis study of the characteristic, and inadequate database. DMTs (Data Mining Techniques) provide helpful tools in finding the models or forms of data and are extremely useful in the decision-making process. Several researchers have participated in the research involving distributed data mining with multi-agent technology. The rapid growth of network technology and IT use has led to the widespread use of distributed databases. This article explains the available data mining technology and the distributed data mining system framework. Distributed Data Mining approach is utilized for this work so that a classifier capable of predicting the success of students in the economic domain can be constructed. This research also discusses the Intelligent Knowledge Base Distributed Data Mining framework to assess the performance of the students through a mid-term exam and final-term exam employing Multi-agent system-based educational mining techniques. Using single and ensemble-based classifiers, this study intends to investigate the factors that influence student performance in higher education and construct a classification model that can predict academic achievement. We also discussed the importance of multi-agent systems and comparative machine learning approaches in EDSS development.

Stratification and Destratification Processes in the Kangjin Bay, South Sea, Korea (남해 강진만에서 성층 형성과 성층 파괴 과정)

  • Jung, Kwagn-Young;Ro, Young-Jae
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • 제15권3호
    • /
    • pp.97-109
    • /
    • 2010
  • This study analyzed stratification and destratification processes in the Kangjin Bay (KB), South Sea, Korea, driven by the Nam Gang Dam water discharge based on numerical modeling experiments. Model performances were evaluated in terms of skill scores for elevation, velocity, temperature and salinity, with scores mostly exceeding 90%. The models reproduced the tidal current, density-driven and wind-driven current. The stratification by fresh water input and destratification by the wind mixing was assessed in terms of the characteristic Richardson number (Ri) in that Ri increased from 0 to 7~20 during the Dam water discharge period, while vertical mixing and destratification followed by the typhoon passage showed Ri, 0 to 2.

Crosswalk Detection Model for Visually impaired Using Deep Learning (딥러닝을 이용한 시각장애인용 횡단보도 탐지 모델 연구)

  • Junsoo Kim;Hyuk Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • 제17권1호
    • /
    • pp.67-75
    • /
    • 2024
  • Crosswalks play an important role for the safe movement of pedestrians in a complex urban environment. However, for the visually impaired, crosswalks can be a big risk factor. Although assistive tools such as braille blocks and acoustic traffic lights exist for safe walking, poor management can sometimes act as a hindrance to safety. This paper proposes a method to improve accuracy in a deep learning-based real-time crosswalk detection model that can be used in applications for pedestrian assistance for the disabled at the beginning. The image was binarized by utilizing the characteristic that the white line of the crosswalk image contrasts with the road surface, and through this, the crosswalk could be better recognized and the location of the crosswalk could be more accurately identified by using two models that learned the whole and the middle part of the crosswalk, respectively. In addition, it was intended to increase accuracy by creating a boundary box that recognizes crosswalks in two stages: whole and part. Through this method, additional frames that the detection model did not detect in RGB image learning from the crosswalk image could be detected.

Two-Path Language Modeling Considering Word Order Structure of Korean (한국어의 어순 구조를 고려한 Two-Path 언어모델링)

  • Shin, Joong-Hwi;Park, Jae-Hyun;Lee, Jung-Tae;Rim, Hae-Chang
    • The Journal of the Acoustical Society of Korea
    • /
    • 제27권8호
    • /
    • pp.435-442
    • /
    • 2008
  • The n-gram model is appropriate for languages, such as English, in which the word-order is grammatically rigid. However, it is not suitable for Korean in which the word-order is relatively free. Previous work proposed a twoply HMM that reflected the characteristics of Korean but failed to reflect word-order structures among words. In this paper, we define a new segment unit which combines two words in order to reflect the characteristic of word-order among adjacent words that appear in verbal morphemes. Moreover, we propose a two-path language model that estimates probabilities depending on the context based on the proposed segment unit. Experimental results show that the proposed two-path language model yields 25.68% perplexity improvement compared to the previous Korean language models and reduces 94.03% perplexity for the prediction of verbal morphemes where words are combined.

KOSPI index prediction using topic modeling and LSTM

  • Jin-Hyeon Joo;Geun-Duk Park
    • Journal of the Korea Society of Computer and Information
    • /
    • 제29권7호
    • /
    • pp.73-80
    • /
    • 2024
  • In this paper, we proposes a method to improve the accuracy of predicting the Korea Composite Stock Price Index (KOSPI) by combining topic modeling and Long Short-Term Memory (LSTM) neural networks. In this paper, we use the Latent Dirichlet Allocation (LDA) technique to extract ten major topics related to interest rate increases and decreases from financial news data. The extracted topics, along with historical KOSPI index data, are input into an LSTM model to predict the KOSPI index. The proposed model has the characteristic of predicting the KOSPI index by combining the time series prediction method by inputting the historical KOSPI index into the LSTM model and the topic modeling method by inputting news data. To verify the performance of the proposed model, this paper designs four models (LSTM_K model, LSTM_KNS model, LDA_K model, LDA_KNS model) based on the types of input data for the LSTM and presents the predictive performance of each model. The comparison of prediction performance results shows that the LSTM model (LDA_K model), which uses financial news topic data and historical KOSPI index data as inputs, recorded the lowest RMSE (Root Mean Square Error), demonstrating the best predictive performance.

Combination of 18F-Fluorodeoxyglucose PET/CT Radiomics and Clinical Features for Predicting Epidermal Growth Factor Receptor Mutations in Lung Adenocarcinoma

  • Shen Li;Yadi Li;Min Zhao;Pengyuan Wang;Jun Xin
    • Korean Journal of Radiology
    • /
    • 제23권9호
    • /
    • pp.921-930
    • /
    • 2022
  • Objective: To identify epidermal growth factor receptor (EGFR) mutations in lung adenocarcinoma based on 18F-fluorodeoxyglucose (FDG) PET/CT radiomics and clinical features and to distinguish EGFR exon 19 deletion (19 del) and exon 21 L858R missense (21 L858R) mutations using FDG PET/CT radiomics. Materials and Methods: We retrospectively analyzed 179 patients with lung adenocarcinoma. They were randomly assigned to training (n = 125) and testing (n = 54) cohorts in a 7:3 ratio. A total of 2632 radiomics features were extracted from the tumor region of interest from the PET (1316) and CT (1316) images. Six PET/CT radiomics features that remained after the feature selection step were used to calculate the radiomics model score (rad-score). Subsequently, a combined clinical and radiomics model was constructed based on sex, smoking history, tumor diameter, and rad-score. The performance of the combined model in identifying EGFR mutations was assessed using a receiver operating characteristic (ROC) curve. Furthermore, in a subsample of 99 patients, a PET/CT radiomics model for distinguishing 19 del and 21 L858R EGFR mutational subtypes was established, and its performance was evaluated. Results: The area under the ROC curve (AUROC) and accuracy of the combined clinical and PET/CT radiomics models were 0.882 and 81.6%, respectively, in the training cohort and 0.837 and 74.1%, respectively, in the testing cohort. The AUROC and accuracy of the radiomics model for distinguishing between 19 del and 21 L858R EGFR mutational subtypes were 0.708 and 66.7%, respectively, in the training cohort and 0.652 and 56.7%, respectively, in the testing cohort. Conclusion: The combined clinical and PET/CT radiomics model could identify the EGFR mutational status in lung adenocarcinoma with moderate accuracy. However, distinguishing between EGFR 19 del and 21 L858R mutational subtypes was more challenging using PET/CT radiomics.

Prediction of Tumor Progression During Neoadjuvant Chemotherapy and Survival Outcome in Patients With Triple-Negative Breast Cancer

  • Heera Yoen;Soo-Yeon Kim;Dae-Won Lee;Han-Byoel Lee;Nariya Cho
    • Korean Journal of Radiology
    • /
    • 제24권7호
    • /
    • pp.626-639
    • /
    • 2023
  • Objective: To investigate the association of clinical, pathologic, and magnetic resonance imaging (MRI) variables with progressive disease (PD) during neoadjuvant chemotherapy (NAC) and distant metastasis-free survival (DMFS) in patients with triple-negative breast cancer (TNBC). Materials and Methods: This single-center retrospective study included 252 women with TNBC who underwent NAC between 2010 and 2019. Clinical, pathologic, and treatment data were collected. Two radiologists analyzed the pre-NAC MRI. After random allocation to the development and validation sets in a 2:1 ratio, we developed models to predict PD and DMFS using logistic regression and Cox proportional hazard regression, respectively, and validated them. Results: Among the 252 patients (age, 48.3 ± 10.7 years; 168 in the development set; 84 in the validation set), PD was occurred in 17 patients and 9 patients in the development and validation sets, respectively. In the clinical-pathologic-MRI model, the metaplastic histology (odds ratio [OR], 8.0; P = 0.032), Ki-67 index (OR, 1.02; P = 0.044), and subcutaneous edema (OR, 30.6; P = 0.004) were independently associated with PD in the development set. The clinical-pathologic-MRI model showed a higher area under the receiver-operating characteristic curve (AUC) than the clinical-pathologic model (AUC: 0.69 vs. 0.54; P = 0.017) for predicting PD in the validation set. Distant metastases occurred in 49 patients and 18 patients in the development and validation sets, respectively. Residual disease in both the breast and lymph nodes (hazard ratio [HR], 6.0; P = 0.005) and the presence of lymphovascular invasion (HR, 3.3; P < 0.001) were independently associated with DMFS. The model consisting of these pathologic variables showed a Harrell's C-index of 0.86 in the validation set. Conclusion: The clinical-pathologic-MRI model, which considered subcutaneous edema observed using MRI, performed better than the clinical-pathologic model for predicting PD. However, MRI did not independently contribute to the prediction of DMFS.

Diagnostic Accuracy of Magnetic Resonance Imaging Features and Tumor-to-Nipple Distance for the Nipple-Areolar Complex Involvement of Breast Cancer: A Systematic Review and Meta-Analysis

  • Jung Hee Byon;Seungyong Hwang;Hyemi Choi;Eun Jung Choi
    • Korean Journal of Radiology
    • /
    • 제24권8호
    • /
    • pp.739-751
    • /
    • 2023
  • Objective: This systematic review and meta-analysis evaluated the accuracy of preoperative breast magnetic resonance imaging (MRI) features and tumor-to-nipple distance (TND) for diagnosing occult nipple-areolar complex (NAC) involvement in breast cancer. Materials and Methods: The MEDLINE, Embase, and Cochrane databases were searched for articles published until March 20, 2022, excluding studies of patients with clinically evident NAC involvement or those treated with neoadjuvant chemotherapy. Study quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 tool. Two reviewers independently evaluated studies that reported the diagnostic performance of MRI imaging features such as continuity to the NAC, unilateral NAC enhancement, non-mass enhancement (NME) type, mass size (> 20 mm), and TND. Summary estimates of the sensitivity and specificity curves and the summary receiver operating characteristic (SROC) curve of the MRI features for NAC involvement were calculated using random-effects models. We also calculated the TND cutoffs required to achieve predetermined specificity values. Results: Fifteen studies (n = 4002 breast lesions) were analyzed. The pooled sensitivity and specificity (with 95% confidence intervals) for NAC involvement diagnosis were 71% (58-81) and 94% (91-96), respectively, for continuity to the NAC; 58% (45-70) and 97% (95-99), respectively, for unilateral NAC enhancement; 55% (46-64) and 83% (75-88), respectively, for NME type; and 88% (68-96) and 58% (40-75), respectively, for mass size (> 20 mm). TND had an area under the SROC curve of 0.799 for NAC involvement. A TND of 11.5 mm achieved a predetermined specificity of 85% with a sensitivity of 64%, and a TND of 12.3 mm yielded a predetermined specificity of 83% with a sensitivity of 65%. Conclusion: Continuity to the NAC and unilateral NAC enhancement may help predict occult NAC involvement in breast cancer. To achieve the desired diagnostic performance with TND, a suitable cutoff value should be considered.

A Multicenter Pilot Study of Biliary Atresia Screening Using Digital Stool Color Imaging

  • Kannamon Waitayagitgumjon;Wannisa Poocharoen;Suchin Trirongjitmoah;Kriengsak Treeprapin;Arada Suttiwongsing;Thetiya Wirifai;Chira Trirongchitmoh;Pitiporn Tangkabuanbutr
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제27권3호
    • /
    • pp.168-175
    • /
    • 2024
  • Purpose: The presence of alcoholic stool in biliary atresia (BA) patients is the basis of a stool color card (SCC), a screening tool that has led to more patients receiving Kasai portoenterostomy earlier. This study aimed to evaluate the color image processing of stool images captured using smartphones. We propose that measuring digital color parameters is a more objective method for identifying BA stools and may improve the sensitivity of BA screening. Methods: A prospective study was conducted in five hospitals in Thailand between October 1, 2020, and December 31, 2021. Stools from infants presenting with jaundice, acholic stool, or dark-colored urine were photographed. Digital image color analysis was performed, and software was developed based on the color on the original SCC. Sensitivity and specificity for predicting BA stools were compared between the SCC and the software. Results: Of 33 infants eligible for data collection, 19 were diagnosed with BA. Saturation and blue were two potential digital color parameters used to differentiate BA stools. The receiver operating characteristic curve was used to determine the optimum cutoff point of both values, and when saturation ≤56 or blue ≥61 was set as a threshold for detecting BA stool, high accuracy was achieved at 81.8% and 78.8%, respectively. Conclusion: Digital image processing is a promising technology. With appropriate cutoff values of saturation in hue, saturation, value and blue in red, green, blue color models, BA stools can be identified, and equivocal-colored stools of non-BA patients can be differentiated with acceptable accuracy in infants presenting with jaundice.