• 제목/요약/키워드: character segmentation

검색결과 173건 처리시간 0.032초

A Vehicular License Plate Recognition Framework For Skewed Images

  • Arafat, M.Y.;Khairuddin, A.S.M.;Paramesran, R.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권11호
    • /
    • pp.5522-5540
    • /
    • 2018
  • Vehicular license plate (LP) recognition system has risen as a significant field of research recently because various explorations are currently being conducted by the researchers to cope with the challenges of LPs which include different illumination and angular situations. This research focused on restricted conditions such as using image of only one vehicle, stationary background, no angular adjustment of the skewed images. A real time vehicular LP recognition scheme is proposed for the skewed images for detection, segmentation and recognition of LP. In this research, a polar co-ordinate transformation procedure is implemented to adjust the skewed vehicular images. Besides that, window scanning procedure is utilized for the candidate localization that is based on the texture characteristics of the image. Then, connected component analysis (CCA) is implemented to the binary image for character segmentation where the pixels get connected in an eight-point neighbourhood process. Finally, optical character recognition is implemented for the recognition of the characters. For measuring the performance of this experiment, 300 skewed images of different illumination conditions with various tilt angles have been tested. The results show that proposed method able to achieve accuracy of 96.3% in localizing, 95.4% in segmenting and 94.2% in recognizing the LPs with an average localization time of 0.52s.

연결특성함수를 이용한 문서화상에서의 영역 분리와 문자열 추출 (Segmentation of region strings using connection-characteristic function)

  • 김석태;이대원;박찬용;남궁재찬
    • 한국통신학회논문지
    • /
    • 제22권11호
    • /
    • pp.2531-2542
    • /
    • 1997
  • This paper describes a method for region segmentation and string extractionin documents which are mixed with text, graphic and picture images by the use of the structural characteristic of connceted components. In segmentation of non-text regionas, with connection-characteristic functions which are made by structural characteristic of connected components, segmentation process is progressed. In the string extraction, first we organize basic-unit-region of which vertical and horizontal length are 1/4 of average length of connection components. Second, by merging the basic-unit-regions one other that have smaller values than a given connection intensity threshold. Third, by linking the word blocks with similar block anagles, initial strings are cresed. Finally the whold strings are generated by merging remaining word blocks whose angles are not decided, if their height and prosition are similar to the initial strings. This method can extract strings that are neither horizontal nor of various character sizes. Through computer exteriments with different style documents, we have shown that the feasibility of our method successes.

  • PDF

문자 가분할과 Support Vector Machine을 이용한 필기 한글 단어 고속 검증기 (Hangul Segmentation and Word Verification System for Automatic Address Processing)

  • 이충식;김인중;신종탁;김진형
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 추계종합학술대회 논문집(3)
    • /
    • pp.37-40
    • /
    • 2000
  • A fast method of Hangul address word verification is presented in this Paper. Pre-segmentation and recognition by DP matching is adopted in this paper. An address line image is over-segmented by analyzing the topology of connected components and the projection profile. A fast individual Hangul character verifier was developed by applying SVM (Support Vector Machine). The segmentation hypothesis was represented by lattice structure, and a best path search by dynamic programming generates the most probable segmentation path and the final verification score. The word verifier was tested on 310 address image DB, and it show the possibility of improvements of this method.

  • PDF

딥러닝 신경망을 이용한 문자 및 단어 단위의 영문 차량 번호판 인식 (Character Level and Word Level English License Plate Recognition Using Deep-learning Neural Networks)

  • 김진호
    • 디지털산업정보학회논문지
    • /
    • 제16권4호
    • /
    • pp.19-28
    • /
    • 2020
  • Vehicle license plate recognition system is not generalized in Malaysia due to the loose character layout rule and the varying number of characters as well as the mixed capital English characters and italic English words. Because the italic English word is hard to segmentation, a separate method is required to recognize in Malaysian license plate. In this paper, we propose a mixed character level and word level English license plate recognition algorithm using deep learning neural networks. The difference of Gaussian method is used to segment character and word by generating a black and white image with emphasized character strokes and separated touching characters. The proposed deep learning neural networks are implemented on the LPR system at the gate of a building in Kuala-Lumpur for the collection of database and the evaluation of algorithm performance. The evaluation results show that the proposed Malaysian English LPR can be used in commercial market with 98.01% accuracy.

Arabic Words Extraction and Character Recognition from Picturesque Image Macros with Enhanced VGG-16 based Model Functionality Using Neural Networks

  • Ayed Ahmad Hamdan Al-Radaideh;Mohd Shafry bin Mohd Rahim;Wad Ghaban;Majdi Bsoul;Shahid Kamal;Naveed Abbas
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권7호
    • /
    • pp.1807-1822
    • /
    • 2023
  • Innovation and rapid increased functionality in user friendly smartphones has encouraged shutterbugs to have picturesque image macros while in work environment or during travel. Formal signboards are placed with marketing objectives and are enriched with text for attracting people. Extracting and recognition of the text from natural images is an emerging research issue and needs consideration. When compared to conventional optical character recognition (OCR), the complex background, implicit noise, lighting, and orientation of these scenic text photos make this problem more difficult. Arabic language text scene extraction and recognition adds a number of complications and difficulties. The method described in this paper uses a two-phase methodology to extract Arabic text and word boundaries awareness from scenic images with varying text orientations. The first stage uses a convolution autoencoder, and the second uses Arabic Character Segmentation (ACS), which is followed by traditional two-layer neural networks for recognition. This study presents the way that how can an Arabic training and synthetic dataset be created for exemplify the superimposed text in different scene images. For this purpose a dataset of size 10K of cropped images has been created in the detection phase wherein Arabic text was found and 127k Arabic character dataset for the recognition phase. The phase-1 labels were generated from an Arabic corpus of quotes and sentences, which consists of 15kquotes and sentences. This study ensures that Arabic Word Awareness Region Detection (AWARD) approach with high flexibility in identifying complex Arabic text scene images, such as texts that are arbitrarily oriented, curved, or deformed, is used to detect these texts. Our research after experimentations shows that the system has a 91.8% word segmentation accuracy and a 94.2% character recognition accuracy. We believe in the future that the researchers will excel in the field of image processing while treating text images to improve or reduce noise by processing scene images in any language by enhancing the functionality of VGG-16 based model using Neural Networks.

Rum-Length code를 이용한 제약없이 쓰여진 한글 필기체 주소열 분할 (An Approach to Segmentation of Address Strings of unconstrained handwritten Hangul using Run-Length Code)

  • 김경환;윤정석
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제28권11호
    • /
    • pp.813-821
    • /
    • 2001
  • 대부분의 문자 인식기들이 인식대상영상이 인식단위로 분할되어있다는 가정아래 개발되고 있으나, 실제 필기한글의 분할에 대한 연구는 미미한 실정이다. 본 논문은 Run-length code를 이용한 능동적인 한글 분할방법을 제시한다. 전처리와 인식단위 분할에 응용할 수 있는, 한글의 구조적 특성을 반영한, 기울기 보정 알고리즘을 제안하고, 필기자들이 일반적인 필기 습관과 한글이 갖는 2차원 구조의 특성을 반영하면서 문자의 접촉점을 적극적으로 찾아내기 위한 기초 함수들과 접촉점들의 분류 방법을 제시한다. 임의의 필기자로부터 수집한 필기 한글 주소열 데이터를 이용해 수행한 실험을 통해, 초과분할을 포함하여, 88.2%의 접촉 문자들을 분리할 수 있었다.

  • PDF

공간의존행렬과 신경망을 이용한 문서영상의 효과적인 블록분할과 유형분류 (An Efficient Block Segmentation and Classification Method for Document Image Analysis Using SGLDM and BP)

  • 김중수;이정환;최흥문
    • 한국정보처리학회논문지
    • /
    • 제2권6호
    • /
    • pp.937-946
    • /
    • 1995
  • 본 논문에서는 공간의존행렬과 신경망을 이용하여 문서영상에서 인식대상 문자가 포함되어 있는 블록들을 좀더 세분해 낼 수 있는 효과적인 방법을 제시 하였다. 제안 된 방법은 명암도 문서블록에서 공간의존행렬을 구하고 7가지 질감 특징을 추출한 뒤 신경망을 이용해 문서블록을 9가지 유형으로 분류할 수 있도록 하였다. 특히 기존에는 비문자영역으로 분류되던 수식, 도표, 순서도 등 주로 문자가 포함되어 있는 블록들을 세분해 낼 수 있도록 하였다. 또한 신경망 학습알고리즘인 BP 를 사용함으로써 기존의 선형분류시에 요구되던 유형별 임계값과 선형면결정지수를 찾는 어려움을 해소하였다. 명암도영상을 이진화하기 전에 먼저 Sobel연산을 적용함으로써 문서 뒷면에 의한 배경 잡음의 영향을 줄일 수 있도록 하였고, 교차 문지르기 후 분할함으로써 블록이 작은 조각으로 나누어지는 것을 방지하도록 하였다. 실험결과 제안한 방법에서는 문자가 포 함되어 있는 블록은 큰 문자, 중간문자, 작은 문자블록 및 수식, 순서도, 도표블록의 6가지로, 그리고 비문자블록은 인물사진, 그래프 등 3가지 유형으로 상세하게 분류 할수 堞있었으며 전체적인 분류성능도 우수함을 확인할 수 있었다.

  • PDF

모듈화된 신경회로망을 이용한 거버 문자 인식 시스템 구현 (A Character Recognition System for Gerber File through Modularized Neural Network)

  • 오혜원;박태형
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2549-2551
    • /
    • 2003
  • We propose character recognition system for Gerber files. The Gerber file is the vector-formatted drawing file for PCB manufacturing. To consider the special vector format and rotated characters, we develop segmentation and feature extraction method. The modularized neural network is then applied to the recognition algorithm. Finally, comparative simulation results are presented to verify the usefulness of the proposed method.

  • PDF

동적자소분할과 신경망을 이용한 인쇄체 한글 문자인식기에 관한 연구 (A Study on Printed Hangeul Recognition with Dynamic Jaso Segmentation and Neural Network)

  • 이판호;장희돈;남궁재찬
    • 한국통신학회논문지
    • /
    • 제19권11호
    • /
    • pp.2133-2146
    • /
    • 1994
  • 본 논문에서는 한글의 동적자소분할 방법과 자소분할 결과 얻어진 가변분할 망눈으로부터 특징벡터를 추출해 신경망에 입력함으로써 문자를 인식하는 방법을 제안한다. 먼저, 각 문자에서 4방향 기여도와 $8\pm8$망눈을 사용하여 256차원의 특징벡터를 구한 후, 신경망에 의해 한글을 6형식으로 분류한다. 분류된 결과를 바탕으로 모음의 통계적인 위치정보와 문자의 구조적인 정보를 이용하여 각 문자를 자소 단위로 분할한다. 분할된 자소의 크기에 따라 가변적인 크기를 갖는 망눈을 구성하고 특징벡터를 추출해 자소인식 신경망에 입력함으로써 문자인식을 행한다. 4개의 서체(3개의 서체는 학습, 1개는 인식실험), KS C 5601내의 2350자의 문자를 대상으로 실험한 결과 학습에 사용된 서체에 대해서는 97%이상, 나머지 한 서체에 대해서는 94% 이상의 인식률을 나타내 제안된 방법의 유효성을 보였다.

  • PDF

딥러닝과 의미론적 영상분할을 이용한 자동차 번호판의 숫자 및 문자영역 검출 (Detection of Number and Character Area of License Plate Using Deep Learning and Semantic Image Segmentation)

  • 이정환
    • 한국융합학회논문지
    • /
    • 제12권1호
    • /
    • pp.29-35
    • /
    • 2021
  • 자동차 번호판 인식은 지능형 교통시스템에서 핵심적인 역할을 담당한다. 따라서 효율적으로 자동차 번호판의 숫자 및 문자영역을 검출하는 것은 매우 중요한 과정이다. 본 연구에서는 딥러닝과 의미론적 영상분할 알고리즘을 적용하여 효과적으로 자동차 번호판의 번호영역을 검출하는 방법을 제안한다. 제안된 방법은 화소 투영과 같은 전처리과정 없이 번호판 영상에서 바로 숫자 및 문자영역을 검출하는 알고리즘이다. 번호판 영상은 도로 위에 설치된 고정 카메라로 부터 획득한 영상으로 날씨 및 조명변화 등을 모두 포함한 다양한 실제 상황에서 촬영된 것을 사용하였다. 입력 영상은 색상변화를 줄이기 위해 정규화하고 실험에 사용된 딥러닝 신경망 모델은 Vgg16, Vgg19, ResNet18 및 ResNet50이다. 제안방법의 성능을 검토하기 위해 번호판 영상 500장으로 실험하였다. 학습을 위해 300장을 할당하였으며 테스트용으로 200장을 사용하였다. 컴퓨터모의 실험결과 ResNet50을 사용할 때 가장 우수하였으며 95.77% 정확도를 얻었다.