• Title/Summary/Keyword: chaperones

Search Result 108, Processing Time 0.039 seconds

A Nucleotide Exchange Factor, BAP, dissociated Protein-Molecular Chaperone Complex in vitro (In vitro에서 핵산치환인자 BAP이 단백질-분자 샤페론 복합체 해리에 미치는 영향)

  • Lee Myoung-Joo;Kim Dong-Eun;Lee Tae-Ho;Jeong Yong-Kee;Kim Young-Hee;Chung Kyung-Tae
    • Journal of Life Science
    • /
    • v.16 no.3 s.76
    • /
    • pp.409-414
    • /
    • 2006
  • Molecular chaperones and folding enzymes in the endoplasmic reticulum (ER) associate with the newly synthesized proteins to prevent their aggregation and help them fold and assemble correctly. Chaperone function of BiP, which is a Hsp70 homologue in ER, is controlled by the N-terminal ATPase domain. The ATPase activity of the ATPase domain is affected by regulatory factors. BAP was identified as a nucleotide exchange factor of BiP (Grp78), which exchanges ADP with ATP in the ATPase domain of BiP This study presents whether BAP can influence folding of a protein, immunoglobulin heavy chain that is bound to BiP tightly. We first examined which nucleotide of ADP and ATP affects on BAP binding to BiP The data showed that endogenous BAP of HEK293 cells prefers ADP for binding to BiP in vitro, suggesting that BAP first releases ADP from the ATPase domain in order to exchange with ATP. Immunoglobulin heavy chain, an unfolded protein substrate, was released from BiP in the presence of BAP but not in the presence of ERdj3, which is another regulatory factor for BiP accelerating the rate of ATP hydrolysis of BiP The ADP-releasing function of BAP was, therefore, believed to be responsible for immunoglobulin heavy chain release from BiP. Grp170, another Hsp70 homologue in ER, did not co-precipited with BAP from $[^{35}S]$-metabolic labeled HEK293 lysate containing both overexpressed Grp170 and BAP. These data suggested that BAP has no specificity to Grp170 although the ATPase domains of Grp170 and BiP are homologous each other.

Endoplasmic Reticulum Stress Response and Apoptosis via the CoCl2-Induced Hypoxia in Neuronal Cells (CoCl2 처리로 유도된 hypoxia상태에서 세포자살과 ER stress에 관련된 인자의 발현)

  • Kim, Seon-Hwan;Kwon, Hyon-Jo;Koh, Hyeon-Song;Song, Shi-Hun;Kwon, Ki-Sang;Kwon, O-Yu;Choi, Seung-Won
    • Journal of Life Science
    • /
    • v.20 no.12
    • /
    • pp.1820-1828
    • /
    • 2010
  • Cobalt(II) chloride, a chemical compound with the formula$CoCl_2$, has been widely used in the treatment of anemia, as a chemical agent for the induction of hypoxia in cell cultures, and is known to activate hypoxic signaling. However, excessive exposure to cobalt is associated with several clinical conditions, including asthma, pneumonia, and hematological abnormalities, and can lead to tissue and cellular toxicity. It is also known to induce apoptosis. One of the questions was that of whether $CoCl_2$ might induce apoptosis via endoplasmic reticulum (ER) stress in neurons. To address this question, first, the level of DNA fragmentation was measured for assay of apoptotic rates using $CoCl_2$ with neuron PC12 cells. After confirmation of apoptosis inductions, under the same conditions, the expression levels of ER stress associated factors [ER chaperones Bip, calnexin, ERp72, ERp29, PDI, and ER membrane kinases (IRE1, ATF6, PERK)] were examined by RT-PCR and Western blotting. These results indicated that apoptosis is induced through activation of ER membrane kinases via ER stress. In conclusion, during induction of apoptosis through $CoCl_2$-induced hypoxia in neuron PC12 cells, ER membrane kinase of IRE1 was dominantly up-expressed, and, consecutively, TRAF2, which has been suggested to be one of the links connecting apoptosis and ER stress, was strongly up-expressed.

Sericin Enhances Secretion of Thyroglobulin in the Thyrocytes (갑상선세포에서 sericin에 의한 thyroglobulin의 분비증가)

  • Jin, Cho-Yi;Song, Seong-Hee;Go, Young-Hwa;Kwon, Ki-Sang;Yun, Eun-Young;Goo, Tae-Won;Yeo, Joo-Hong;Kim, Seung-Whan;Choi, Jong-Soon;Yu, Kweon;Kwon, O-Yu
    • Journal of Life Science
    • /
    • v.20 no.8
    • /
    • pp.1249-1253
    • /
    • 2010
  • Sericin is a type of high molecular weight water-soluble glycoprotein surrounding fibroin (silk protein) that has been used as a cell culture supplement and accelerates cell proliferation in various serum-free media. The purpose of this study was to investigate the enhancing effect of thyroglobulin (Tg) secretion by sericin in thyrocytes, FRTL-5 cells. While Tg-mRNA expression was not enhanced, a secreted form of Tg was obviously increased by sericin. In this status, expression of both endoplasmic reticulum (ER) molecular chaperones (Bip & calreticulin) and ER membrane proteins (IRE1, PERK & ATF6) was enhanced. The proximal step of IRE1, XBP1 mRNA splicing was slightly detected however, the proximal step of PERK, phosphorylation of $eIF2{\alpha}$, was changeless. In addition, sericin enhanced cell viability by the MTT assay. The above results showing the ability of sericin to promote protein production demonstrated its potential usefulness as a new biomaterial.

Solvent Tolerant Bacteria and Their Potential Use (유기용매 내성 세균과 이용가능성)

  • Joo, Woo Hong
    • Journal of Life Science
    • /
    • v.25 no.12
    • /
    • pp.1458-1469
    • /
    • 2015
  • Many organic solvent-tolerant bacteria have been isolated from all environments such as soil, waste-water, even deep sea after first isolation report of organic solvent-tolerant bacterium. Most organic solvent- tolerant isolates have been determined to be Gram-negative bacteria, because Gram-negative bacteria have inherent tolerance property toward hostile organic solvents more than Gram-positive bacteria. The mechanisms of organic solvent tolerance have been elucidated extensively using mainly organic solvent-tolerant Gram-negative bacteria. The solvent-tolerance mechanisms in Gram-positive bacteria can be found in comparatively recent research. Organic solvents exhibited different toxicity depending on the solvent, and the tolerance levels of organic solvent-tolerant bacteria toward organic solvents were also highly changeable among species and strains. Therefore, organic solvent-tolerant bacteria could coped with solvent toxicity and adapted to solvent stress through the multifactorial and multigenic adaptative strategies. They could be survived even in the hyper concentrations of organic solvents by mechanisms which include: changes in cell morphology and cell behaviour, cell surface modifications, cell membrane adaptations, solvent excretion pumps, chaperones and anti-oxidative response. The aim of this work is to review the representative solvent tolerant bacteria and the adaptative and tolerance strategies toward organic solvents in organic solvent-tolerant bacteria, and their potential industrial and environmental impact.

Enhancement of Soluble Expression of CGTase in E. coli By Chaperone Molecules and Low Temperature Cultivation. (대장균에서 chaperons 분자와 저온배양에 의한 CGTase의 가용성 발현 증대)

  • 박소림;김성구;권미정;남수완
    • Journal of Life Science
    • /
    • v.14 no.1
    • /
    • pp.121-125
    • /
    • 2004
  • The synergistic effect of lowered incubation temperature and CroEL/ES expression on the production of soluble form of B. macerans cyclodextrin glucanotransferase (CGTase) was studied in recombinant E. coli. pTCGTl and pGroll carrying the cgt and groEL/ES genes under the control of T7 promoter and pzt-I promoter, respectively, were co-introduced. Tetracycline (10 ng/ml) and IPTG (1 mM) were added at the early-exponential phase (2 hr) and mid-exponential phase (3 hr). Low temperature cultivation at $25^{\circ}C$ with groEL/ES expression improved the activity of CGTase by two fold, compared to $37^{\circ}C$ cultivation without chaperones. SDS-PACE analysis revealed that about 69% of CGTase in the total CGTase protein was found in the soluble fraction by overexpression of GroEL/ES and cultivation at$25^{\circ}C$, whereas 20% of CGTase was detected in the soluble fraction when E. coli was cultivated at $37^{\circ}C$ without chaperone. The amount of soluble CGTase from $25^{\circ}C$ culture with chaperone was 3.5-fold higher than that of $37^{\circ}C$ culture without chaperone. Therefore the expression of CroEL/ES and low temperature cultivation greatly enhanced the soluble production of CGTase in E. coli.

Non-ribosomal Ribosome Assembly Factors in Escherichia coli (Escherichia coli 에서 리보솜 조립과정에 관여하는 단백질들)

  • Choi, Eunsil;Hwang, Jihwan
    • Journal of Life Science
    • /
    • v.24 no.8
    • /
    • pp.915-926
    • /
    • 2014
  • The ribosome is a protein synthesizing machinery and a ribonucleoprotein complex that consists of three ribosomal RNAs (23S, 16S and 5S) and 54 ribosomal proteins in bacteria. In the course of ribosome assembly, ribosomal proteins (r-protein) and rRNAs are modified, the r-proteins bind to rRNAs to form ribonucleoprotein complexes which are folded into mature ribosomal subunits. In this process, a number of non-ribosomal trans-acting factors organize the assembly process of the components. Those factors include GTP- and ATP-binding proteins, rRNA and r-protein modification enzymes, chaperones, and RNA helicases. During ribosome biogenesis, they participate in the modifications of ribosomal proteins and RNAs, and the assemblies of ribosomal proteins with rRNAs. Ribosomes can be assembled from a discrete set of components in vitro, and it is notable that in vivo ribosome assembly is much faster than in vitro ribosome assembly. This suggests that non-ribosomal ribosome assembly factors help to overcome several kinetic traps in ribosome biogenesis process. In spite of accumulation of genetic, structural, and biochemical data, not only the entire procedure of bacterial ribosome synthesis but also most of roles of ribosome assembly factors remain elusive. Here, we review ribosome assembly factors involved in the ribosome maturation of Escherichia coli, and summarize the contributions of several ribosome assembly factors which associate with 50S and 30S ribosomal subunits, respectively.

Regulation of stf Operon Expression and Its Virulence (살모넬라가 발현하는 stf 오페론의 조절과 병원성 인자로서의 기능)

  • Kim Sam-Woong;Kim Young-Hee;Kang Ho-Young
    • Journal of Life Science
    • /
    • v.15 no.4 s.71
    • /
    • pp.553-560
    • /
    • 2005
  • The stf (Salmonella typhimurium fimbriae) operon consisting of stfA(CDEFG assumes to encode putative fimbriae. The complete stf operon is existed in S. typhimurium and S. choleraesuis, whereas it is absent in S. typhi. Analyses of the amino acid residues between major subunit StfA of the Stf fimbriae and those of known other fimbriaes suggested that Stf belongs to class I type fimbriae. Through comparison of StfD chaperone with the other fimbrial chaperones, and of C-terminus in subunits of Stf fimbriae, it belongs to FGS (with a short Fl-G1 loop) subfamily. In order to investigate the expression of stf operon, we have constructed a Salmonella strain containing a chromosomal stfA::lacZYA transcriptional fusion, resulting in S. typhimurium $_X8532$. The strain $_X8532$ lacked the expression of \beta-galactosidase$ under normal culture conditions. However, with longer incubation time of the S. typhimurium $_X8532$, we have isolated 21 individual strains exhibiting $Lac^+$ phenotype. $Lac^+$ phenotype was appeared as approximately 0.03 frequency per generation. All isolates expressed lacZ constitutively in the various environmental conditions. Various global regulatory proteins including RpoS, OmpR, and CpxR were not involved in the regulation of the stf operon. A S. typhimurium $_X8661$ mutant lacking stfAC function attenuated 6.7 folds more than that of wild type $_X3761$ in the mouse virulence test, suggesting in the somehow involved in the Salmonella pathogenesis.

Isolation and Characterization of a Novel Transcription Factor ATFC Activated by ER Stress from Bombyx mori Bm5 Cell Lines (누에 배양세포(Bm5)로부터 분리한 새로운 전사제어인자 ATFC의 특성분석)

  • 구태원;윤은영;김성완;최광호;황재삼;박수정;권오유;강석우
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.596-603
    • /
    • 2003
  • Cells respond to an accumulation of unfolded proteins in the endoplasmic reticulum (ER) by increasing transcription of genes encoding molecular chaperones and folding enzymes. The information is transmitted from the ER lumen to the nucleus by intracellular signaling pathway, called the unfolded protein response (UPR). To obtain genes related to UPR from B. mori, the cDNA library was constructed with mRNA isolated from Bm5 cell lines in which N-glycosylation was inhibited by tunicamycin treatment. From the cDNA library, we selected 40 clones that differentially expressed when cells were treated with tunicamycin. Among these clones, we have isolated ATFC gene showing similarity with Hac1p, encoding a bZIP transcription factor of 5. cerevisiae. Basic-leucine zipper (bZIP) domain in amino acid sequences of ATFC shared homology with yeast Hac1p. Also, ATFC is up-regulated by accumulation of unfolded proteins in the ER through the treatment of ER stress drugs. Therefore we suggest that ATFC represents a major component of the putative transcription factor responsible for the UPR leading to the induction of ER-localized stress proteins.