• Title/Summary/Keyword: channels

Search Result 7,546, Processing Time 0.031 seconds

Hydrophobicity and Nanotribological Properties of Silicon Channels coated by Diamond-like Carbon Films

  • Pham, Duc Cuong;Na, Kyung-Hwan;Pham, Van Hung;Yoon, Eui-Sung
    • KSTLE International Journal
    • /
    • v.10 no.1_2
    • /
    • pp.1-5
    • /
    • 2009
  • This paper reports an investigation on nanotribological properties of silicon nanochannels coated by a diamond-like carbon (DLC) film. The nanochannels were fabricated on Si (100) wafers by using photolithography and reactive ion etching (RIE) techniques. The channeled surfaces (Si channels) were then further modified by coating thin DLC film. Water contact angle of the modified and unmodified Si surfaces was examined by an anglemeter using the sessile-drop method. Nanotribological properties, namely friction and adhesion forces, of the Si channels coated with DLC (DLC-coated Si channels) were investigated in comparison with those of the flat Si, DLC-coated flat Si (flat DLC), and Si channels, using an atomic force microscope (AFM). Results showed that the DLC-coated Si channels greatly increased hydrophobicity of silicon surfaces. The DLC coating and Si channels themselves individually reduced adhesion and friction forces of the flat Si. Further, the DLC-coated Si channels exhibited the lowest values of these forces, owing to the combined effect of reduced contact area through the channeling and low surface energy of the DLC. This combined modification could prove a promising method for tribological applications at small scales.

The Effect of Acupuncture Treatment at the GB37 on the Electroencephalogram(EEG) (광명(GB37) 자침이 뇌파변화에 미치는 영향)

  • Yu, Ik-Han;Lee, Sang-Lyoung
    • Korean Journal of Acupuncture
    • /
    • v.28 no.3
    • /
    • pp.85-98
    • /
    • 2011
  • Objectives : The aim of this thesis is to examine the effect of acupuncture treatment at the GB37 on normal humans by using the power spectral analysis of the EEG. Methods : EEG (Electroencephalogram) power spectrum exhibits site-specific and state-related differences in specific frequency bands. In this thesis, the power spectrum was measured by the complexity. the 32 channels EEG study was carried out in the 13 subjects (12 males ; age=22.58 years old, 1 females ; 22 years old). Results : In the ${\alpha}$ (alpha) band, the power values at F7, F3, F4, F8, FTC2, C4, T4, CP1, CP2, TCP2, TT2, Pz, P4, Po1, Po2, O1, Oz, O2 channels (p<0.05) during the GB37-acupoint treatment were significantly changed. And in many channels were decreased. In the ${\beta}$ (beta) band, the power values at Cz, C4, T4, Tcp1, T6, Po1, O1, Oz, O2 channels (p<0.05) during the GB37-acupoint treatment were significantly changed. And in many channels were decreased. In the ${\delta}$(delta) band, the power values at Fp1, TT2 channels (p<0.05) during the GB37-acupoint treatment were significantly changed. And in many channels were decreased. In the $\theta$ (theta) band, the power values at Fp1, F8, FTC2, Pz channels (p<0.05) during the GB37-acupoint treatment were significantly changed. And in many channels were decreased. Conclusions : This results suggest that the acupuncture treatment at the GB37 significantly mostly change the power spectrum value on the alpha (18 channels), beta (9 channels) bands.

Experimental and Numerical Assessment of Liquid Water Exhaust Performance of Flow Channels in PEM Fuel Cells (고분자 전해질 연료전지 유로의 수분배출 특성의 실험 및 해석적 평가)

  • Kim, Hyun-Il;Nam, Jin-Hyun;Shin, Dong-Hoon;Chung, Tae-Yong;Kim, Young-Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.85-92
    • /
    • 2009
  • Polymer electrolyte membrane (PEM) fuel cells are a promising technology for short-term power generation required in residential and automobile applications. Proper management of water has been found to be essential for improving the performance and durability of PEM fuel cells. This study investigated the liquid water exhaust capabilities of various flow channels having different geometries and surface properties. Three-pass serpentine flow fields were prepared by patterning channels of 1 mm or 2 mm width onto hydrophilic Acrylic plates or hydrophobic Teflon plates, and the behaviors of liquid water in those flow channels were experimentally visualized. Computational fluid dynamics (CFD) simulations were also conducted to quantitatively assess the liquid water exhaust capabilities of flow channels for PEM fuel cells. Numerical results showed that hydrophobic flow channels have better liquid water exhaust capabilities than hydrophilic flow channels. Flow channels with curved corners showed less droplet stagnation than the channels with sharp corners. It was also found that a smaller width is desirable for hydrophobic flow channels while a larger width is desirable for hydrophilic ones. The above results were explained as being due to the different droplet morphologies in hydrophobic and hydrophilic channels.

Flow Characteristics in the Converging Mini-Channels (좁아지는 유로에서의 유동 특성)

  • Karng, Sarng-Woo;Kim, Jin-Ho;Lee, Yoon-Pyo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1623-1628
    • /
    • 2004
  • Recently mini-channels or micro-channels are widely used for cooling the high density power electronic devices. Especially, the channels are used in small and high efficient equipments such as heat pipes and heat exchangers. Interfacial velocities between liquid and gas phases are very important in mini or micro-channels. In this paper, an experiment and a numerical analysis on the interfacial velocities were performed. In the experiment, the interfacial velocities which were measured by the high-speed CCD camera were about $26{\sim}33$ cm/s and the velocities increased as the inclination angle did. In the numerical experiment, CFD-ACE+, a commercial program, was used, the velocities had similar values with experimental results. As the inclination angle and the contact angle increased, the interfacial velocities did because of the surface tension which causes to move the interface. The effect of inclination angle was larger in the converging channels than in straight channels.

  • PDF

Emerging role of transient receptor potential (TRP) channels in cancer progression

  • Yang, Dongki;Kim, Jaehong
    • BMB Reports
    • /
    • v.53 no.3
    • /
    • pp.125-132
    • /
    • 2020
  • Transient receptor potential (TRP) channels comprise a diverse family of ion channels, the majority of which are calcium permeable and show sophisticated regulatory patterns in response to various environmental cues. Early studies led to the recognition of TRP channels as environmental and chemical sensors. Later studies revealed that TRP channels mediated the regulation of intracellular calcium. Mutations in TRP channel genes result in abnormal regulation of TRP channel function or expression, and interfere with normal spatial and temporal patterns of intracellular local Ca2+ distribution. The resulting dysregulation of multiple downstream effectors, depending on Ca2+ homeostasis, is associated with hallmarks of cancer pathophysiology, including enhanced proliferation, survival and invasion of cancer cells. These findings indicate that TRP channels affect multiple events that control cellular fate and play a key role in cancer progression. This review discusses the accumulating evidence supporting the role of TRP channels in tumorigenesis, with emphasis on prostate cancer.

CFD Analysis on the Channel Shapes of Parallel Micro-Channels (병렬 마이크로 채널 형상에 따른 CFD 유동해석)

  • Choi, Yong-Seok;Lim, Tae-Woo;Kim, You-Taek;Kim, Do-Yeop
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.25 no.5
    • /
    • pp.1102-1109
    • /
    • 2013
  • An numerical analysis was performed to obtain the design parameters for parallel micro-channels. The parallel micro-channels consist of 10 square channels with a hydraulic diameter of 300 ${\mu}m$ and inlet/outlet manifolds. The channel length is 5mm, 10mm and 40mm respectively. Mass flux was set between 200~600kg/m2s as inlet boundary condition and atmospheric pressure was set as outlet boundary condition. The pressure drop in channels and manifolds were estimated by using the Shah and London correlation and the flow uniformity was represented by the velocity distributions with dimensionless velocity. The results show that the flow uniformity in channels depends on shapes of manifolds, length and mass flux.

The Influences of Mobile Channel Configurations on Channel Integration Quality in Cross-Channel Electronic Commerce

  • Junghwan Kim;Miri Kim;Seonjin Shin;Jaeki Song
    • Asia pacific journal of information systems
    • /
    • v.27 no.1
    • /
    • pp.18-37
    • /
    • 2017
  • Many retailers have extended their extant online channels (i.e., websites) to mobile channels for communicating with and delivering their products or services to customers. However, retailers have trouble delivering a cohesive and seamless customer experience across the Web and mobile channels. To address this challenge, we propose a way for retailers to enrich customers' seamless experiences across channels by configuring mobile channels (functionality- and interactivity-oriented configurations) along with traditional Web channels. This study theoretically contributes a research framework that posits the role of mobile channels as an extension of existing websites. It also provides practical insight for effectively articulating an e-commerce strategy in cross-channel electronic commerce.

Feedback Error Quantification in Adaptive Modulation over Fading Channels

  • Choi, Se-Yeong
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.2
    • /
    • pp.183-186
    • /
    • 2011
  • In this work, we consider imperfectness of feedback channels in the adaptive transmission scheme which was previously studied with an assumption of error-free feedback channels. New method of mapping the modulation index into the feedback channel symbols and quantifying feedback error over fading channels are proposed. The presented method and results are expected to offer valuable tools for the system designer to efficiently implement adaptive diversity schemes to compensate for the performance degradation due to feedback error.

STUDIES OF CELL COMMUNICATION BY USING GAP JUNCTION CHANNELS RECONSTITUTE IN UNILAMELLAR LIPID VESICLES

  • Joe, Cheol-O
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1996.07a
    • /
    • pp.6-6
    • /
    • 1996
  • Gap junction channels were reconstituted into unilamellar liposomes using immunoaffinity purified connexin 32 gap junction protein from rat liver. Vesicles containing open channels and close channels were separated by means of iso-osmolar sucros density gradient sedimentation. The open channels formed in lipid vesicles were permeable to a fluorescent dye molecule, lucifer yellow of which the hydrodynamic size is similar to pore size of gap junctions in vivo. (omitted)

  • PDF

Painful Channels in Sensory Neurons

  • Lee, Yunjong;Lee, Chang-Hun;Oh, Uhtaek
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.315-324
    • /
    • 2005
  • Pain is an unpleasant sensation experienced when tissues are damaged. Thus, pain sensation in some way protects body from imminent threat or injury. Peripheral sensory nerves innervated to peripheral tissues initially respond to multiple forms of noxious or strong stimuli, such as heat, mechanical and chemical stimuli. In response to these stimuli, electrical signals for conducting the nociceptive neural signals through axons are generated. These action potentials are then conveyed to specific areas in the spinal cord and in the brain. Sensory afferent fibers are heterogeneous in many aspects. For example, sensory nerves are classified as $A{\alpha}$, $-{\beta}$, $-{\delta}$ and C-fibers according to their diameter and degree of myelination. It is widely accepted that small sensory fibers tend to respond to vigorous or noxious stimuli and related to nociception. Thus these fibers are specifically called nociceptors. Most of nociceptors respond to noxious mechanical stimuli and heat. In addition, these sensory fibers also respond to chemical stimuli [Davis et al. (1993)] such as capsaicin. Thus, nociceptors are considered polymodal. Recent advance in research on ion channels in sensory neurons reveals molecular mechanisms underlying how various types of stimuli can be transduced to neural signals transmitted to the brain for pain perception. In particular, electrophysiological studies on ion channels characterize biophysical properties of ion channels in sensory neurons. Furthermore, molecular biology leads to identification of genetic structures as well as molecular properties of ion channels in sensory neurons. These ion channels are expressed in axon terminals as well as in cell soma. When these channels are activated, inward currents or outward currents are generated, which will lead to depolarization or hyperpolarization of the membrane causing increased or decreased excitability of sensory neurons. In order to depolarize the membrane of nerve terminals, either inward currents should be generated or outward currents should be inhibited. So far, many cationic channels that are responsible for the excitation of sensory neurons are introduced recently. Activation of these channels in sensory neurons is evidently critical to the generation of nociceptive signals. The main channels responsible for inward membrane currents in nociceptors are voltage-activated sodium and calcium channels, while outward current is carried mainly by potassium ions. In addition, activation of non-selective cation channels is also responsible for the excitation of sensory neurons. Thus, excitability of neurons can be controlled by regulating expression or by modulating activity of these channels.